Mask Grounding for Referring Image Segmentation

被引:0
|
作者
Chng, Yong Xien [1 ,2 ]
Zheng, Henry [1 ]
Han, Yizeng [1 ]
Qiu, Xuchong [2 ]
Huang, Gao [1 ]
机构
[1] Tsinghua Univ, Dept Automat, BNRist, Beijing, Peoples R China
[2] Bosch Corp Res, Renningen, Germany
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
10.1109/CVPR52733.2024.02509
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Referring Image Segmentation (RIS) is a challenging task that requires an algorithm to segment objects referred by free-form language expressions. Despite significant progress in recent years, most state-of-the-art (SOTA) methods still suffer from considerable language-image modality gap at the pixel and word level. These methods generally 1) rely on sentence-level language features for language-image alignment and 2) lack explicit training supervision for fine-grained visual grounding. Consequently, they exhibit weak object-level correspondence between visual and language features. Without well-grounded features, prior methods struggle to understand complex expressions that require strong reasoning over relationships among multiple objects, especially when dealing with rarely used or ambiguous clauses. To tackle this challenge, we introduce a novel Mask Grounding auxiliary task that significantly improves visual grounding within language features, by explicitly teaching the model to learn fine-grained correspondence between masked textual tokens and their matching visual objects. Mask Grounding can be directly used on prior RIS methods and consistently bring improvements. Furthermore, to holistically address the modality gap, we also design a cross-modal alignment loss and an accompanying alignment module. These additions work synergistically with Mask Grounding. With all these techniques, our comprehensive approach culminates in MagNet (Mask-grounded Network), an architecture that significantly outperforms prior arts on three key benchmarks (RefCOCO, RefCOCO+ and G-Ref), demonstrating our method's effectiveness in addressing current limitations of RIS algorithms. Our code and pre-trained weights will be released.
引用
收藏
页码:26563 / 26573
页数:11
相关论文
共 50 条
  • [31] Query Reconstruction Network for Referring Expression Image Segmentation
    Shi, Hengcan
    Li, Hongliang
    Wu, Qingbo
    Ngan, King Ngi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 995 - 1007
  • [32] PRNet: A Progressive Refinement Network for referring image segmentation
    Liu, Jing
    Jiang, Huajie
    Hu, Yongli
    Yin, Baocai
    NEUROCOMPUTING, 2025, 630
  • [33] A CONTEXT-BASED NETWORK FOR REFERRING IMAGE SEGMENTATION
    Li, Xinyu
    Liu, Yu
    Xu, Kaiping
    Zhao, Zhehuan
    Liu, Sipei
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1436 - 1440
  • [34] Advancing Referring Expression Segmentation Beyond Single Image
    Wu, Yixuan
    Zhang, Zhao
    Xie, Chi
    Zhu, Feng
    Zhao, Rui
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 2628 - 2638
  • [35] Referring Image Segmentation via Recurrent Refinement Networks
    Li, Ruiyu
    Li, Kaican
    Kuo, Yi-Chun
    Shu, Michelle
    Qi, Xiaojuan
    Shen, Xiaoyong
    Jia, Jiaya
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5745 - 5753
  • [36] Bilateral Knowledge Interaction Network for Referring Image Segmentation
    Ding, Haixin
    Zhang, Shengchuan
    Wu, Qiong
    Yu, Songlin
    Hu, Jie
    Cao, Liujuan
    Ji, Rongrong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 2966 - 2977
  • [37] Dual Context Perception Transformer for Referring Image Segmentation
    Kong, Yuqiu
    Liu, Junhua
    Yao, Cuili
    PATTERN RECOGNITION AND COMPUTER VISION, PT V, PRCV 2024, 2025, 15035 : 216 - 230
  • [38] Text-Vision Relationship Alignment for Referring Image Segmentation
    Pu, Mingxing
    Luo, Bing
    Zhang, Chao
    Xu, Li
    Xu, Fayou
    Kong, Mingming
    NEURAL PROCESSING LETTERS, 2024, 56 (02)
  • [39] Local-global coordination with transformers for referring image segmentation
    Liu, Fang
    Kong, Yuqiu
    Zhang, Lihe
    Feng, Guang
    Yin, Baocai
    NEUROCOMPUTING, 2023, 522 : 39 - 52
  • [40] Prompt-Driven Referring Image Segmentation with Instance Contrasting
    Shang, Chao
    Song, Zichen
    Qiu, Heqian
    Wang, Lanxiao
    Meng, Fanman
    Li, Hongliang
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 4124 - 4134