Machine learning for surficial geologic mapping

被引:0
|
作者
Johnson, Sarah E. [1 ]
Haneberg, William C. [1 ]
机构
[1] Univ Kentucky, Dept Earth & Environm Sci, 111 Slone Bldg, Lexington, KY 40506 USA
关键词
gradient-boosted trees; landform mapping; lidar; machine learning; mapping probability; surficial geology; uncertainty; REMOTE-SENSING DATA; LANDSLIDE SUSCEPTIBILITY; RANDOM FORESTS; DECISION TREE; AIRBORNE GEOPHYSICS; CLASSIFICATION; UNCERTAINTY; ALGORITHMS;
D O I
10.1002/esp.6032
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Surficial geologic maps contribute to decisions regarding natural hazard mitigation, land-use planning and infrastructure development. However, geologic maps may not adequately convey the uncertainty inherent in the information shown. In this study, we use machine learning and lidar elevation data to produce surficial geologic maps for parts of two quadrangles in Kentucky. We measured the performance of eight supervised machine learning methods by comparing the overall accuracy and F1 scores for each geologic unit. Surficial geologic units include residuum, colluvium, alluvial and lacustrine terraces, high-level alluvial deposits and modern alluvium. The importance of 41 moving-window geomorphic variables, including slope, roughness, residual topography, curvature, topographic wetness index, vertical distance to channel network and topographic flatness, was reduced to 12 variables by ranking the importance of each variable. The gradient-boosted trees model produced the classifier with the greatest overall accuracy, producing maps with overall accuracies of 87.4% to 90.7% in areas of simple geology and 80.7% to 81.6% in areas with more complex geology. The model produced high F1 scores of up to 96.2% for colluvium but was not as good at distinguishing between units found in the same geomorphic position, such as high-level alluvium and residuum, both of which are found on ridgelines. Probability values for each geologic unit at each cell are conveyed using gradations of colour and eliminate the need for drawn boundaries between units. Machine learning may be used to create accurate surficial geologic maps in areas of simple geology; in more complex areas, highlight that additional information obtained in the field is necessary to distinguish between units.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] DISASTERNETS: EMBEDDING MACHINE LEARNING IN DISASTER MAPPING
    Xu, Qingsong
    Shi, Yilei
    Zhu, Xiao Xiang
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2536 - 2539
  • [42] Mapping the patent landscape of medical machine learning
    Mateo Aboy
    W. Nicholson Price
    Seth Raker
    Nature Biotechnology, 2023, 41 : 461 - 468
  • [43] MAPPING UNCERTAINTY: MACHINE LEARNING TO ACT HUMANLY?
    Corduneanu, Alexandru
    2020 BASIQ INTERNATIONAL CONFERENCE: NEW TRENDS IN SUSTAINABLE BUSINESS AND CONSUMPTION, 2020, : 335 - 342
  • [44] IMAT: matrix learning machine with interpolation mapping
    Wang, Zhe
    Lu, Mingzhe
    Zhu, Yujin
    Gao, Daqi
    ELECTRONICS LETTERS, 2014, 50 (24) : 1836 - U201
  • [45] Integrating machine learning to advance epitope mapping
    Grewal, Simranjit
    Hegde, Nidhi
    Yanow, Stephanie K.
    FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [46] GEOLOGICAL MAPPING USING MACHINE LEARNING ALGORITHMS
    Harvey, A. S.
    Fotopoulos, G.
    XXIII ISPRS CONGRESS, COMMISSION VIII, 2016, 41 (B8): : 423 - 430
  • [47] Machine learning mapping of lattice correlated data
    Kim, Jangho
    Pederiva, Giovanni
    Shindler, Andrea
    PHYSICS LETTERS B, 2024, 856
  • [48] Survey & mapping system for surficial marine sediments
    Noakes, JF
    Noakes, SE
    Dvoracek, DK
    Bush, PB
    SEA TECHNOLOGY, 1999, 40 (08) : 49 - 54
  • [49] SURFICIAL CONDUCTIVITY MAPPING WITH AIRBORNE INPUT SYSTEM
    DYCK, AV
    BECKER, A
    COLLETT, LS
    CANADIAN MINING AND METALLURGICAL BULLETIN, 1972, 65 (719): : 46 - &
  • [50] SURFICIAL CONDUCTIVITY MAPPING WITH AIRBORN INPUT SYSTEM
    DYCK, AV
    BECKER, A
    COLLETT, LS
    CIM BULLETIN, 1974, 67 (744): : 104 - 109