NONLOCAL GAGLIARDO-NIRENBERG-SOBOLEV TYPE INEQUALITY

被引:0
|
作者
Foghem, Guy [1 ]
机构
[1] Tech Univ Dresden, Fakult Mathemat, Inst Wissenschaftliches Rechnen, D-01217 Dresden, Germany
关键词
p-Levy integrable kernel; Nonlocal Sobolev inequality; Nonlocal Sobolev (compact) embeddings; Orlicz spaces; EMBEDDINGS; THEOREM; SPACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish Gagliardo-Nirenberg-Sobolev type inequalities on nonlocal Sobolev spaces driven by p-Levy integrable kernels, by imposing some appropriate growth conditions on the associated critical function. This naturally allows to devise Sobolev embeddings, as well as, compact embeddings of nonlocal Sobolev spaces into Orlicz type spaces. The Gagliardo-Nirenberg-Sobolev type inequalities, as in the classical context, turn out to have some reciprocity with Poincare and Poincare-Sobolev type inequalities. The classical fractional Sobolev inequality is also derived as a direct consequence.
引用
收藏
页码:55 / 83
页数:29
相关论文
共 50 条
  • [21] On the Brezis and Mironescu conjecture concerning a Gagliardo-Nirenberg inequality for fractional Sobolev norms
    Maz'ya, V
    Shaposhnikova, T
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2002, 81 (09): : 877 - 884
  • [22] Sobolev-Gagliardo-Nirenberg and Markov type inequalities on subanalytic domains
    Bos, LP
    Milman, PD
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1995, 5 (06) : 853 - 923
  • [23] A Functional Inequality Associated to a Gagliardo-Nirenberg Type Quotient
    Tarulli, Mirko
    Venkov, George
    PROCEEDINGS OF THE 43RD INTERNATIONAL CONFERENCE APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE'17), 2017, 1910
  • [24] Where Sobolev interacts with Gagliardo-Nirenberg
    Brezis, Haim
    Mironescu, Petru
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (08) : 2839 - 2864
  • [25] Sobolev, Hardy, Gagliardo–Nirenberg, and Caffarelli–Kohn–Nirenberg-type inequalities for some fractional derivatives
    Aidyn Kassymov
    Michael Ruzhansky
    Niyaz Tokmagambetov
    Berikbol T. Torebek
    Banach Journal of Mathematical Analysis, 2021, 15
  • [26] Sharp Constant of an Anisotropic Gagliardo–Nirenberg-Type Inequality and Applications
    Amin Esfahani
    Ademir Pastor
    Bulletin of the Brazilian Mathematical Society, New Series, 2017, 48 : 171 - 185
  • [27] Euler semigroup, Hardy–Sobolev and Gagliardo–Nirenberg type inequalities on homogeneous groups
    Michael Ruzhansky
    Durvudkhan Suragan
    Nurgissa Yessirkegenov
    Semigroup Forum, 2020, 101 : 162 - 191
  • [28] Gagliardo-Nirenberg type inequality for variable exponent Lebesgue spaces
    Kopaliani, Tengiz
    Chelidze, George
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (01) : 232 - 236
  • [29] Sharp Constant of an Anisotropic Gagliardo-Nirenberg-Type Inequality and Applications
    Esfahani, Amin
    Pastor, Ademir
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (01): : 171 - 185
  • [30] On the constants for some fractional Gagliardo Nirenberg and Sobolev inequalities
    Morosi, Carlo
    Pizzocchero, Livio
    EXPOSITIONES MATHEMATICAE, 2018, 36 (01) : 32 - 77