Active Object Detection with Knowledge Aggregation and Distillation from Large Models

被引:2
|
作者
Yang, Dejie [1 ]
Liu, Yang [1 ]
机构
[1] Peking Univ, Wangxuan Inst Comp Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52733.2024.01573
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurately detecting active objects undergoing state changes is essential for comprehending human interactions and facilitating decision-making. The existing methods for active object detection (AOD) primarily rely on visual appearance of the objects within input, such as changes in size, shape and relationship with hands. However, these visual changes can be subtle, posing challenges, particularly in scenarios with multiple distracting no-change instances of the same category. We observe that the state changes are often the result of an interaction being performed upon the object, thus propose to use informed priors about object related plausible interactions (including semantics and visual appearance) to provide more reliable cues for AOD. Specifically, we propose a knowledge aggregation procedure to integrate the aforementioned informed priors into oracle queries within the teacher decoder, offering more object affordance commonsense to locate the active object. To streamline the inference process and reduce extra knowledge inputs, we propose a knowledge distillation approach that encourages the student decoder to mimic the detection capabilities of the teacher decoder using the oracle query by replicating its predictions and attention. Our proposed framework achieves state-of-the-art performance on four datasets, namely Ego4D, Epic-Kitchens, MECCANO, and 100DOH, which demonstrates the effectiveness of our approach in improving AOD. The code and models are available at https://github.com/idejie/KAD.git.
引用
收藏
页码:16624 / 16633
页数:10
相关论文
共 50 条
  • [21] CrossKD: Cross-Head Knowledge Distillation for Object Detection
    Wang, Jiabao
    Chen, Yuming
    Zhang, Zhaohui
    Li, Xiang
    Cheng, Ming-Ming
    Hou, Qibin
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 16520 - 16530
  • [22] Knowledge Distillation via Hierarchical Matching for Small Object Detection
    Ma, Yong-Chi
    Ma, Xiao
    Hao, Tian-Ran
    Cui, Li-Sha
    Jin, Shao-Hui
    Lyu, Pei
    Journal of Computer Science and Technology, 2024, 39 (04) : 798 - 810
  • [23] Context-aware knowledge distillation network for object detection
    Chu, Jing-Hui
    Shi, Li-Dong
    Jing, Pei-Guang
    Lv, Wei
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2022, 56 (03): : 503 - 509
  • [24] Discretization and decoupled knowledge distillation for arbitrary oriented object detection
    Chen, Cheng
    Ding, Hongwei
    Duan, Minglei
    DIGITAL SIGNAL PROCESSING, 2024, 150
  • [25] Exploring Inconsistent Knowledge Distillation for Object Detection with Data Augmentation
    Liang, Jiawei
    Liang, Siyuan
    Liu, Aishan
    Ma, Ke
    Li, Jingzhi
    Cao, Xiaochun
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 768 - 778
  • [26] Closed -loop unified knowledge distillation for dense object detection
    Song, Yaoye
    Zhang, Peng
    Huang, Wei
    Zha, Yufei
    You, Tao
    Zhang, Yanning
    PATTERN RECOGNITION, 2024, 149
  • [27] Active Learning for Lane Detection: A Knowledge Distillation Approach
    Peng, Fengchao
    Wang, Chao
    Liu, Jianzhuang
    Yang, Zhen
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15132 - 15141
  • [28] Hybrid Deep Learning Vision-based Models for Human Object Interaction Detection by Knowledge Distillation
    Moutik, Oumaima
    Tigani, Smail
    Saadane, Rachid
    Chehri, Abdellah
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KSE 2021), 2021, 192 : 5093 - 5103
  • [29] KDSMALL: A lightweight small object detection algorithm based on knowledge distillation
    Zhou, Wen
    Wang, Xiaodon
    Fan, Yusheng
    Yang, Yishuai
    Wen, Yihan
    Li, Yixuan
    Xu, Yicheng
    Lin, Zhengyuan
    Chen, Langlang
    Yao, Shizhou
    Zequn, Liu
    Wang, Jianqing
    COMPUTER COMMUNICATIONS, 2024, 219 : 271 - 281
  • [30] Knowledge Distillation based Compact Model Learning Method for Object Detection
    Ko, Jong Gook
    Yoo, Wonyoung
    11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 1276 - 1278