Solving equilibrium and fixed-point problems in Hilbert spaces: A class of strongly convergent Mann-type dual-inertial subgradient extragradient methods

被引:0
|
作者
Rehman, Habib ur [1 ]
Ghosh, Debdas [2 ]
Yao, Jen-Chih [3 ]
Zhao, Xiaopeng [4 ]
机构
[1] Zhejiang Normal Univ, Sch Math, Jinhua 321004, Peoples R China
[2] Indian Inst Technol BHU, Dept Math Sci, Varanasi 221005, India
[3] China Med Univ, Res Ctr Interneural Comp, Taichung, Taiwan
[4] Tiangong Univ, Sch Math Sci, Tianjin 300387, Peoples R China
关键词
Equilibrium problem; Pseudomonotone bifunction; Fixed-point problem; Demicontractive mapping; Subgradient extragradient method; Strong convergence theorems; VISCOSITY APPROXIMATION METHODS; AUXILIARY PROBLEM PRINCIPLE; MONOTONE-OPERATORS; ALGORITHMS; SET;
D O I
10.1016/j.cam.2025.116509
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims to enhance the convergence rate of the extragradient method by carefully selecting inertial parameters and employing an adaptive step-size rule. To achieve this, we introduce a new class of Mann-type subgradient extragradient methods that utilize a dual- inertial framework, applying distinct step-size formulas to generate the iterative sequence. Our main objective is to approximate a common solution to pseudomonotone equilibrium and fixed-point problems involving demicontractive mappings in real Hilbert spaces. The proposed methods integrate self-adaptive, monotone, and non-monotone step-size criteria, thereby eliminating the need to estimate Lipschitz-type constants. Under suitable conditions, we establish strong convergence theorems for the resulting iterative sequences. Moreover, we demonstrate the applicability of the proposed methods to both variational inequality and fixedpoint problems. Numerical experiments confirm that these methods offer improved efficiency and performance compared to existing approaches in the literature.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] The subgradient extragradient method for solving pseudomonotone equilibrium and fixed point problems in Banach spaces
    Jolaoso, L. O.
    OPTIMIZATION, 2022, 71 (14) : 4051 - 4081
  • [22] AN INERTIAL SHRINKING SUBGRADIENT EXTRAGRADIENT METHOD FOR PSEUDOMONOTONE EQUILIBRIUM AND FIXED POINT PROBLEMS IN BANACH SPACES
    Owolabi, Abd-Semii Oluwatosin-Enitan
    Mewomo, Oluwatosin Temitope
    Yao, Jen-Chih
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (10) : 2525 - 2556
  • [23] Krasnoselski–Mann-type inertial method for solving split generalized mixed equilibrium and hierarchical fixed point problems
    Preeyanuch Chuasuk
    Anchalee Kaewcharoen
    Journal of Inequalities and Applications, 2021
  • [24] Shrinking Inertial Extragradient Methods for Solving Split Equilibrium and Fixed Point Problems
    Petrot, Narin
    Khonchaliew, Manatchanok
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (01): : 347 - 367
  • [25] A SUBGRADIENT EXTRAGRADIENT ALGORITHM FOR SOLVING SPLIT EQUILIBRIUM AND FIXED POINT PROBLEMS IN REFLEXIVE BANACH SPACES
    Oyewole, Olawale Kazeem
    Mewomo, Oluwatosin Temitope
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2020, Mathematical Research Press (2020):
  • [26] A General Inertial Projection-Type Algorithm for Solving Equilibrium Problem in Hilbert Spaces with Applications in Fixed-Point Problems
    Wairojjana, Nopparat
    Rehman, Habib ur
    De la Sen, Manuel
    Pakkaranang, Nuttapol
    AXIOMS, 2020, 9 (03)
  • [27] STRONG CONVERGENCE OF INERTIAL HYBRID SUBGRADIENT METHODS FOR SOLVING EQUILIBRIUM PROBLEMS IN HILBERT SPACES
    Anh, Pham Ngoc
    Kim, Jong Kyu
    Hien, Nguyen Duc
    Van Hong, Nguyen
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2023, 24 (03) : 499 - 514
  • [28] Modified mildly inertial subgradient extragradient method for solving pseudomonotone equilibrium problems and nonexpansive fixed point problems
    Akutsah, Francis
    Mebawondu, Akindele Adebayo
    Ofem, Austine Efut
    George, Reny
    Nabwey, Hossam A.
    Narain, Ojen Kumar
    AIMS MATHEMATICS, 2024, 9 (07): : 17276 - 17290
  • [29] A new double inertial subgradient extragradient algorithm for solving split pseudomonotone equilibrium problems and fixed point problems
    Mebawondu A.A.
    Ofem A.E.
    Akutsah F.
    Agbonkhese C.
    Kasali F.
    Narain O.K.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2024, 70 (4) : 1321 - 1349
  • [30] Mann-type approximation scheme for solving a new class of split inverse problems in Hilbert spaces
    Wickramasinghe, Madushi U.
    Mewomo, Oluwatosin T.
    Alakoya, Timilehin O.
    Iyiola, Olaniyi S.
    APPLICABLE ANALYSIS, 2024, 103 (06) : 1118 - 1148