Effect of magnetic field on the thermal and hydraulic behavior of biological hybrid nanofluid flow in curved microchannels

被引:0
|
作者
Gharehkhani, M. [1 ]
Dinarvand, S. [2 ]
Hajmohammadi, M. R. [1 ]
机构
[1] Amirkabir Univ Technol, Dept Mech Engn, Tehran 1591634311, Iran
[2] Islamic Azad Univ, Dept Mech Engn, Cent Tehran Branch, Tehran, Iran
关键词
Magnetic field; Bio-hybrid nanofluids; Magnetic control; Microchannel curvature; TRACHEOBRONCHIAL AIRWAYS; ENTROPY GENERATION; DRUG-DELIVERY; BLOOD-FLOW; CONVECTION; FLUID; NANOPARTICLES; SIMULATION; CU/BLOOD; CARRIER;
D O I
10.1007/s10973-024-13852-8
中图分类号
O414.1 [热力学];
学科分类号
摘要
Active flow control offers promising solutions for enhancing the performance of microfluidics. Magnetic fields can affect micro-scale devices' heat transfer characteristics and flow shape, affecting system performance and reliability. Curved channels are key components of thermal and biomedical systems and are crucial for integrating and miniaturizing microsystems. With this point of view, this numerical study investigates the simultaneous effects of curvature and magnetic field on the thermo-hydraulic behavior of microchannels in engineering and medical applications. Several local and average parameters were examined to evaluate the volumetric and surface behavior of the bio-hybrid nanofluid (Cu + CuO/Blood) in the studied microchannels. Numerical results show that if a magnetic field is placed in a specific direction and with particular strength in the curved microchannel, the resulting magnetic force can eliminate the effects of curvature, including the secondary flow. Therefore, the surface and volumetric parameters of flow and heat transfer, including the heat transfer coefficient, friction coefficient, and pressure drop, become similar to those of the flow in a straight microchannel. At Reynolds number (Re\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Re$$\end{document}) 450, the heat transfer coefficient in circular and curved microchannels without a magnetic field deviates by 113.8% and 87.1%, respectively, compared to a straight microchannel. Increasing the Hartmann number (Ha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ha$$\end{document}) up to 30 can reduce the maximum deviation of microchannels to about 1%. Therefore, the values of the corresponding parameters eventually converge and show good agreement by reaching a critical Ha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ha$$\end{document}. Overall, this study underscores the potential of passive control of unwanted mixing in microfluidics devices.
引用
收藏
页数:17
相关论文
共 50 条
  • [11] The Effect of Thermal Radiation on Nanofluid Cooled Microchannels
    Pooya Mehraban Rad
    Cyrus Aghanajafi
    Journal of Fusion Energy, 2009, 28
  • [12] The Effect of Thermal Radiation on Nanofluid Cooled Microchannels
    Rad, Pooya Mehraban
    Aghanajafi, Cyrus
    JOURNAL OF FUSION ENERGY, 2009, 28 (01) : 91 - 100
  • [13] Three-dimensional multiphase CFD modeling of thermal–hydraulic characteristics of nanofluid flow in helical microchannels
    Sina Nabati Shoghl
    Zakaria Loloei
    Mostafa Keshavarz Moraveji
    Journal of Thermal Analysis and Calorimetry, 2019, 136 : 1831 - 1846
  • [14] Three-dimensional multiphase CFD modeling of thermal-hydraulic characteristics of nanofluid flow in helical microchannels
    Shoghl, Sina Nabati
    Loloei, Zakaria
    Moraveji, Mostafa Keshavarz
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2019, 136 (04) : 1831 - 1846
  • [15] Computation of stretching disks fluid flow of hybrid nanofluid under the effect of variable magnetic field
    Zada, Jan
    Khan, Aamir
    Farooq, Muhammad
    Alsubaie, Abdullah Saad
    Rezapour, Shahram
    Inc, Mustafa
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2025, 105 (01):
  • [16] Thermal analysis for hybrid nanofluid past a cylinder exposed to magnetic field
    Alharbi, Sayer Obaid
    Nawaz, M.
    Nazir, U.
    AIP ADVANCES, 2019, 9 (11)
  • [17] Thermal and magnetic influences on the hybrid nanofluid flow over exponentially elongating/contracting curved surfaces in porous media: a comprehensive study
    Behera, Sanwatee
    Mishra, S. R.
    Pattnaik, P. K.
    Panda, Subhajit
    PRAMANA-JOURNAL OF PHYSICS, 2024, 98 (04):
  • [18] Assessment of thermal behavior of nanofluid flow in a wavy walled cavity in presence of sliding motion and magnetic field
    Nandy, Shirsa
    Das, Shinjini
    Das, Anwesha
    Manna, Nirmal K.
    Biswas, Nirmalendu
    MATERIALS TODAY-PROCEEDINGS, 2022, 52 : 1707 - 1713
  • [19] Impact of magnetic field localization on the vortex generation in hybrid nanofluid flow
    Ali, Kashif
    Ahmad, Shabbir
    Ahmad, Sohail
    Tayebi, Tahar
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (13) : 6283 - 6300
  • [20] Thermohydrodynamics of Bodewadt hybrid-nanofluid flow in a horizontal magnetic field
    Pandey, Amit Kumar
    Das, Abhijit
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2024, 106 : 148 - 165