Pig-ear detection from the thermal infrared image based on improved YOLOv8n

被引:5
|
作者
Han, Hui [1 ,2 ]
Xue, Xianglong [2 ]
Li, Qifeng [2 ]
Gao, Hongfeng [1 ]
Wang, Rong [2 ]
Jiang, Ruixiang [2 ]
Ren, Zhiyu [2 ]
Meng, Rui [2 ]
Li, Mingyu [2 ]
Guo, Yuhang [2 ]
Liu, Yu [2 ]
Ma, Weihong [2 ]
机构
[1] Henan Univ Sci & Technol, Coll Informat Engn, Luoyang 471023, Henan, Peoples R China
[2] Beijing Acad Agr & Forestry Sci, Informat Technol Res Ctr, Beijing Agr Sci Bldg 11,Shuguang Garden Middle Rd, Beijing 100097, Peoples R China
来源
INTELLIGENCE & ROBOTICS | 2024年 / 4卷 / 01期
关键词
Thermal infrared image; YOLOv8n; target detection; convolution; MHSA; loss function; BODY-TEMPERATURE; THERMOGRAPHY; CATTLE;
D O I
10.20517/ir.2024.02
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the current pig scale breeding process, considering the low accuracy and speed of the infrared thermal camera automatic measurement concerning the pig body surface temperature, this paper proposes an improved algorithm for target detection of the pig ear thermal infrared image based on the YOLOv8n model. The algorithm firstly replaces the standard convolution in the CSPDarknet-53 and neck network with Deformable Convolution v2, so that the convolution kernel can adjust its shape according to the actual situation, thus enhancing the extraction of input features; secondly, the Multi-Head Self-Attention module is integrated into the backbone network, which extends the sensory horizons of the backbone network; finally, the Focal-Efficient Intersection Over Union loss function was introduced into the loss of bounding box regression, which increases the Intersection Over Union loss and gradient of the target and, in turn, improves the accuracy of the bounding box regression. Apart from that, a pig training set, including 3,000 infrared images from 50 different individual pigs, was constructed, trained, and tested. The performance of the proposed algorithm was evaluated by comparing it with the current mainstream target detection algorithms, such as Faster-RCNN, SSD, and YOLO families. The experimental results showed that the improved model achieves 97.0%, 98.1% and 98.5% in terms of Precision, Recall and mean Average Precision, which are 3.3, 0.7 and 4.7 percentage points higher compared to the baseline model. At the same time, the detection speed can reach 131 frames per second, which meets the requirement of real-time detection. The research results show that the improved pig ear detection method based on YOLOv8n proposed in this paper can accurately locate the pig ear in thermal infrared images and provide a reference and basis for the subsequent pig body temperature detection.
引用
收藏
页码:20 / 38
页数:19
相关论文
共 50 条
  • [21] Lightweight Underwater Target Detection Algorithm Based on Improved YOLOv8n
    Xie, Guobo
    Liang, Lihui
    Lin, Zhiyi
    Lin, Songze
    Su, Qing
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (24)
  • [22] Steel Surface Defect Detection Algorithm Based on Improved YOLOv8n
    Zhang, Tian
    Pan, Pengfei
    Zhang, Jie
    Zhang, Xiaochen
    APPLIED SCIENCES-BASEL, 2024, 14 (12):
  • [23] Research on Improved Lightweight Fish Detection Algorithm Based on Yolov8n
    Zhang, Qingyang
    Chen, Shizhe
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (10)
  • [24] Field cabbage detection and positioning system based on improved YOLOv8n
    Jiang, Ping
    Qi, Aolin
    Zhong, Jiao
    Luo, Yahui
    Hu, Wenwu
    Shi, Yixin
    Liu, Tianyu
    PLANT METHODS, 2024, 20 (01)
  • [25] A Detection Algorithm for Citrus Huanglongbing Disease Based on an Improved YOLOv8n
    Xie, Wu
    Feng, Feihong
    Zhang, Huimin
    SENSORS, 2024, 24 (14)
  • [26] YOLOv8-PD: an improved road damage detection algorithm based on YOLOv8n model
    Zeng, Jiayi
    Zhong, Han
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [27] Detection Method for Rice Seedling Planting Conditions Based on Image Processing and an Improved YOLOv8n Model
    Zhao, Bo
    Zhang, Qifan
    Liu, Yangchun
    Cui, Yongzhi
    Zhou, Baixue
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [28] ESFD-YOLOv8n: Early Smoke and Fire Detection Method Based on an Improved YOLOv8n Model
    Mamadaliev, Dilshodjon
    Touko, Philippe Lyonel Mbouembe
    Kim, Jae-Ho
    Kim, Suk-Chan
    FIRE-SWITZERLAND, 2024, 7 (09):
  • [29] Research on Fabric Defect Detection Algorithm Based on Improved YOLOv8n Algorithm
    Mei, Shunqi
    Shi, Yishan
    Gao, Heng
    Tang, Li
    ELECTRONICS, 2024, 13 (11)
  • [30] Vehicle Flow Detection and Tracking Based on an Improved YOLOv8n and ByteTrack Framework
    Liu, Jinjiang
    Xie, Yonghua
    Zhang, Yu
    Li, Haoming
    WORLD ELECTRIC VEHICLE JOURNAL, 2025, 16 (01):