CMD: A Cross Mechanism Domain Adaptation Dataset for 3D Object Detection

被引:1
|
作者
Deng, Jinhao [1 ,2 ]
Ye, Wei [1 ,2 ]
Wu, Hai [1 ,2 ]
Huang, Xun [1 ,2 ]
Xia, Qiming [1 ,2 ]
Li, Xin [4 ]
Fang, Jin [3 ]
Li, Wei [3 ]
Wen, Chenglu [1 ,2 ]
Wang, Cheng [1 ,2 ]
机构
[1] Xiamen Univ, Fujian Key Lab Sensing & Comp Smart Cities, Xiamen, Peoples R China
[2] Xiamen Univ, Key Lab Multimedia Trusted Percept & Efficient Co, Minist Educ China, Xiamen, Peoples R China
[3] Inceptio, Shanghai, Peoples R China
[4] Texas A&M Univ, Sect Visual Comp & Interact Media, College Stn, TX USA
来源
关键词
Dataset; 3D Object Detection; Domain Adaptation;
D O I
10.1007/978-3-031-72998-0_13
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Point cloud data, representing the precise 3D layout of the scene, quickly drives the research of 3D object detection. However, the challenge arises due to the rapid iteration of 3D sensors, which leads to significantly different distributions in point clouds. This, in turn, results in subpar performance of 3D cross-sensor object detection. This paper introduces a Cross Mechanism Dataset, named CMD, to support research tackling this challenge. CMD is the first domain adaptation dataset, comprehensively encompassing diverse mechanical sensors and various scenes for 3D object detection. In terms of sensors, CMD includes 32-beam LiDAR, 128-beam LiDAR, solid-state LiDAR, 4D millimeter-wave radar, and cameras, all of which are well-synchronized and calibrated. Regarding the scenes, CMD consists of 50 sequences collocated from different scenarios, ranging from campuses to highways. Furthermore, we validated the effectiveness of various domain adaptation methods in mitigating sensor-based domain differences. We also proposed a DIG method to reduce domain disparities from the perspectives of Density, Intensity, and Geometry, which effectively bridges the domain gap between different sensors. The experimental results on the CMD dataset show that our proposed DIG method outperforms the state-of-the-art techniques, demonstrating the effectiveness of our baseline method. The dataset and the corresponding code are available at https://github.com/im-djh/CMD.
引用
收藏
页码:219 / 236
页数:18
相关论文
共 50 条
  • [31] Hierarchical contrastive adaptation for cross-domain object detection
    Deng, Ziwei
    Kong, Quan
    Akira, Naoto
    Yoshinaga, Tomoaki
    MACHINE VISION AND APPLICATIONS, 2022, 33 (04)
  • [32] Hierarchical contrastive adaptation for cross-domain object detection
    Ziwei Deng
    Quan Kong
    Naoto Akira
    Tomoaki Yoshinaga
    Machine Vision and Applications, 2022, 33
  • [33] Uni3D: A Unified Baseline for Multi-dataset 3D Object Detection
    Zhang, Bo
    Yuan, Jiakang
    Shi, Botian
    Chen, Tao
    Li, Yikang
    Qiao, Yu
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 9253 - 9262
  • [34] Cross-Domain 3D Model Retrieval via Visual Domain Adaptation
    Liu, Anan
    Xiang, Shu
    Li, Wenhui
    Nie, Weizhi
    Su, Yuting
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 828 - 834
  • [35] Domain Generalization of 3D Object Detection by Density-Resampling
    Li, Shuangzhi
    Ma, Lei
    Li, Xingyu
    COMPUTER VISION - ECCV 2024, PT LXIV, 2025, 15122 : 456 - 473
  • [36] SF-UDA3D: Source-Free Unsupervised Domain Adaptation for LiDAR-Based 3D Object Detection
    Saltori, Cristiano
    Lathuiliere, Stephane
    Sebe, Nicu
    Ricci, Elisa
    Galasso, Fabio
    2020 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2020), 2020, : 771 - 780
  • [37] MDT3D: Multi-Dataset Training for LiDAR 3D Object Detection Generalization
    Soum-Fontez, Louis
    Deschaud, Jean-Emmanuel
    Goulette, Francois
    2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 5765 - 5772
  • [38] Object Recognition in 3D Point Clouds Using Web Data and Domain Adaptation
    Lai, Kevin
    Fox, Dieter
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2010, 29 (08): : 1019 - 1037
  • [39] Adaptation via Proxy: Building Instance-Aware Proxy for Unsupervised Domain Adaptive 3D Object Detection
    Li, Ziyu
    Yao, Yuncong
    Quan, Zhibin
    Qi, Lei
    Feng, Zhen-Hua
    Yang, Wankou
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (02): : 3478 - 3492
  • [40] Cross-Domain and Cross-Modal Knowledge Distillation in Domain Adaptation for 3D Semantic Segmentation
    Li, Miaoyu
    Zhang, Yachao
    Xie, Yuan
    Gao, Zuodong
    Li, Cuihua
    Zhang, Zhizhong
    Qu, Yanyun
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 3829 - 3837