Field test and long-term heat extraction performance evaluation of the deep U-type borehole heat exchanger system

被引:1
|
作者
Cai, Wanlong [1 ]
Wang, Fenghao [1 ]
Zhang, Yuping [2 ]
Jiang, Jinghua [1 ]
Wang, Qiuwang [3 ]
Shao, Haibing [4 ]
Kolditz, Olaf [4 ,5 ]
Nagel, Thomas [4 ,6 ]
Chen, Chaofan [4 ,6 ,7 ]
机构
[1] Xi An Jiao Tong Univ, Sch Human Settlements & Civil Engn, Xian 710049, Peoples R China
[2] Minist Nat Resources, Key Lab Coal Resources Explorat & Comprehens Utili, Xian 710049, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Peoples R China
[4] UFZ Helmholtz Ctr Environm Res, Permoserstr 15, D-04318 Leipzig, Germany
[5] Tech Univ Dresden, Fac Environm Sci, D-01069 Dresden, Germany
[6] Tech Univ Bergakad Freiberg, Geotech Inst, D-09599 Freiberg, Germany
[7] China Univ Min & Technol Beijing, Sch Energy & Min Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep U-type Borehole Heat Exchanger (DUBHE); Field test; Long-term performance; System optimization; Eavor-loop technology; OpenGeoSys; NUMERICAL-ANALYSIS; BEND PIPE;
D O I
10.1016/j.renene.2024.122171
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The concept of the deep U-type borehole heat exchanger (DUBHE) has been proposed and implemented in recent years to achieve higher heat extraction capacity and efficiency. Given the substantial initial investment required for implementation, it becomes imperative to quantitatively assess the long-term thermo-technoeconomic performance of the DUBHE system. In this study, the pilot DUBHE project in Xi'an, China, is first introduced in detail, along with 60-day in-situ monitoring data. The monitoring data are used for the validation of a heterogeneous 3D numerical model that is established in OpenGeoSys (OGS) software. Based on the validated model, a series of extended scenarios of the DUBHE system are simulated to show that the maximum sustainable heat extraction rate of the pilot DUBHE system is around 480 kW. The heat extraction capacity of the DUBHE can be significantly improved by a larger depth rather than a longer horizontal length. The thermally affected distance extends more than 35 m away from the borehole. The techno-economic analysis shows that the lowest value of the Levelized Cost of Energy (LCOE) of the DUBHE system is 0.584 Yuan/kWh, which corresponds to the scenario with a vertical depth of 2800 m and a horizontal length of 600 m.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Heat transfer analysis of underground U-type heat exchanger of ground source heat pump system
    Pei, Guihong
    Zhang, Liyin
    SPRINGERPLUS, 2016, 5
  • [32] Field Test and Numerical Simulation on Heat Transfer Performance of Coaxial Borehole Heat Exchanger
    Li, Peng
    Guan, Peng
    Zheng, Jun
    Dou, Bin
    Tian, Hong
    Duan, Xinsheng
    Liu, Hejuan
    ENERGIES, 2020, 13 (20)
  • [33] Effects of climate change on long-term building heating performance of medium-deep borehole heat exchanger coupled heat pump
    Zhang, Sheng
    Liu, Jun
    Zhang, Xia
    Niu, Dun
    Wang, Fenghao
    Chai, Jiale
    Lu, Yalin
    Sun, Yongjun
    Lin, Zhang
    ENERGY AND BUILDINGS, 2023, 293
  • [34] Heat extraction model and characteristics of coaxial deep borehole heat exchanger
    Li, Ji
    Xu, Wei
    Li, Jianfeng
    Huang, Shuai
    Li, Zhao
    Qiao, Biao
    Yang, Chun
    Sun, Deyu
    Zhang, Guangqiu
    RENEWABLE ENERGY, 2021, 169 : 738 - 751
  • [35] Long-term performance of BHE (borehole heat exchanger) fields with negligible groundwater movement
    Lazzari, Stefano
    Priarone, Antonella
    Zanchini, Enzo
    ENERGY, 2010, 35 (12) : 4966 - 4974
  • [36] Research on the long-term operation performance of deep borehole heat exchangers array: Thermal attenuation and maximum heat extraction capacity
    Deng, Jiewen
    Peng, Chenwei
    Su, Yangyang
    Qiang, Wenbo
    Wei, Qingpeng
    ENERGY AND BUILDINGS, 2023, 298
  • [37] Influencing factors analysis and operation optimization for the long-term performance of medium-deep borehole heat exchanger coupled ground source heat pump system
    Liu, Jun
    Wang, Fenghao
    Gao, Yuan
    Zhang, Yuping
    Cai, Wanlong
    Wang, Ming
    Wang, Zhihua
    ENERGY AND BUILDINGS, 2020, 226
  • [38] Long-term performance of heat exchanger piles
    Olgun, C. Guney
    Ozudogru, Tolga Y.
    Abdelaziz, Sherif L.
    Senol, Aykut
    ACTA GEOTECHNICA, 2015, 10 (05) : 553 - 569
  • [39] Long-term performance of heat exchanger piles
    C. Guney Olgun
    Tolga Y. Ozudogru
    Sherif L. Abdelaziz
    Aykut Senol
    Acta Geotechnica, 2015, 10 : 553 - 569
  • [40] Experimental Investigation of Convective Heat Transfer of Nanofluids in a U-Type Heat Exchanger
    Haghshenas, Masoud
    ASIAN JOURNAL OF CHEMISTRY, 2012, 24 (06) : 2589 - 2592