Field test and long-term heat extraction performance evaluation of the deep U-type borehole heat exchanger system

被引:1
|
作者
Cai, Wanlong [1 ]
Wang, Fenghao [1 ]
Zhang, Yuping [2 ]
Jiang, Jinghua [1 ]
Wang, Qiuwang [3 ]
Shao, Haibing [4 ]
Kolditz, Olaf [4 ,5 ]
Nagel, Thomas [4 ,6 ]
Chen, Chaofan [4 ,6 ,7 ]
机构
[1] Xi An Jiao Tong Univ, Sch Human Settlements & Civil Engn, Xian 710049, Peoples R China
[2] Minist Nat Resources, Key Lab Coal Resources Explorat & Comprehens Utili, Xian 710049, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Peoples R China
[4] UFZ Helmholtz Ctr Environm Res, Permoserstr 15, D-04318 Leipzig, Germany
[5] Tech Univ Dresden, Fac Environm Sci, D-01069 Dresden, Germany
[6] Tech Univ Bergakad Freiberg, Geotech Inst, D-09599 Freiberg, Germany
[7] China Univ Min & Technol Beijing, Sch Energy & Min Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep U-type Borehole Heat Exchanger (DUBHE); Field test; Long-term performance; System optimization; Eavor-loop technology; OpenGeoSys; NUMERICAL-ANALYSIS; BEND PIPE;
D O I
10.1016/j.renene.2024.122171
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The concept of the deep U-type borehole heat exchanger (DUBHE) has been proposed and implemented in recent years to achieve higher heat extraction capacity and efficiency. Given the substantial initial investment required for implementation, it becomes imperative to quantitatively assess the long-term thermo-technoeconomic performance of the DUBHE system. In this study, the pilot DUBHE project in Xi'an, China, is first introduced in detail, along with 60-day in-situ monitoring data. The monitoring data are used for the validation of a heterogeneous 3D numerical model that is established in OpenGeoSys (OGS) software. Based on the validated model, a series of extended scenarios of the DUBHE system are simulated to show that the maximum sustainable heat extraction rate of the pilot DUBHE system is around 480 kW. The heat extraction capacity of the DUBHE can be significantly improved by a larger depth rather than a longer horizontal length. The thermally affected distance extends more than 35 m away from the borehole. The techno-economic analysis shows that the lowest value of the Levelized Cost of Energy (LCOE) of the DUBHE system is 0.584 Yuan/kWh, which corresponds to the scenario with a vertical depth of 2800 m and a horizontal length of 600 m.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Mitigation of long-term heat extraction attenuation of U-type medium-deep borehole heat exchanger by climate change
    Jiang, Jinghua
    Zhang, Xia
    Liu, Jun
    Sun, Yongjun
    Zhang, Sheng
    Wang, Fenghao
    BUILDING SIMULATION, 2024, 17 (11) : 1971 - 1987
  • [2] Influencing factors analysis for the long-term thermal performance of medium and deep U-type borehole heat exchanger system
    Huang, Shuai
    Li, Jiqin
    Zhu, Ke
    Dong, Jiankai
    Jiang, Yiqiang
    JOURNAL OF BUILDING ENGINEERING, 2023, 68
  • [3] Evaluation of the long-term performance of the deep U-type borehole heat exchanger on different geological parameters using the Taguchi method
    Jiang, Jinghua
    Wang, Fenghao
    Yang, Xiong
    Zhang, Yuping
    Deng, Jiewen
    Wei, Qingpeng
    Cai, Wanlong
    Chen, Chaofan
    JOURNAL OF BUILDING ENGINEERING, 2022, 59
  • [4] Numerical investigation on the long-term heating performance and sustainability analysis of medium-deep U-type borehole heat exchanger system
    Huang, Shuai
    Li, Jiqin
    Zhu, Ke
    Dong, Jiankai
    Jiang, Yiqiang
    ENERGY, 2024, 289
  • [5] Numerical investigation on the long-term thermal response of a U-type medium-deep borehole heat exchanger under specific heat extraction rates
    Zhang, Qunlin
    Li, Bowen
    Liu, Fei
    Shui, Linqi
    Han, Yuanhong
    Zhao, Tong
    JOURNAL OF BUILDING ENGINEERING, 2025, 100
  • [6] Long-term thermal performance analysis of deep coaxial borehole heat exchanger based on field test
    Huang, Yibin
    Zhang, Yanjun
    Xie, Yangyang
    Zhang, Yu
    Gao, Xuefeng
    Ma, Jingchen
    JOURNAL OF CLEANER PRODUCTION, 2021, 278
  • [7] Numerical investigation on the influence of groundwater flow on long-term heat extraction performance of deep borehole heat exchanger array
    Yang, Xiong
    Cai, Wanlong
    Li, Yongpeng
    Wang, Ming
    Kong, Yanlong
    Wang, Fenghao
    Chen, Chaofan
    Geothermal Energy, 2024, 12 (01)
  • [8] Long-term Performance Evaluation and Economic Analysis for Deep Borehole Heat Exchanger Heating System in Weihe Basin
    Cai, Wanlong
    Wang, Fenghao
    Jiang, Jinghua
    Wang, Zeyuan
    Liu, Jun
    Chen, Chaofan
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [9] In-situ test and numerical investigation on the long-term performance of deep borehole heat exchanger coupled heat pump heating system
    Liu, Bin
    Wang, Jiangfeng
    Li, Hongyan
    Liu, Jian
    Wang, Pengtao
    Cai, Wanlong
    Sun, Xianpeng
    Chen, Chaofan
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 61
  • [10] Dynamic Heat Transfer Analysis on the New U-type Medium-Deep Borehole Ground Heat Exchanger
    Guan, Chunmin
    Fang, Zhaohong
    Zhang, Wenke
    Yao, Haiqing
    Man, Yi
    Yu, Mingzhi
    FRONTIERS IN ENERGY RESEARCH, 2022, 10