Deep Learning and X-Ray Imaging Innovations for Pneumonia Infection Diagnosis: Introducing DeepPneuNet

被引:0
|
作者
Chakraborty, Sanjay [1 ,2 ]
Nag, Tirthajyoti [3 ]
Pandey, Saroj Kumar [4 ]
Ghosh, Jayasree [3 ]
Dey, Lopamudra [5 ]
机构
[1] Linkoping Univ, Dept Comp & Informat Sci IDA, REAL, AIICS, Linkoping, Sweden
[2] Techno Int New Town, Dept Comp Sci & Engn, Kolkata, India
[3] JIS Univ, Dept Comp Sci & Engn, Kolkata, India
[4] GLA Univ, Dept Comp Engn & Applicat, Mathura, India
[5] Linkoping Univ, Dept Biomed & Clin Sci BKV, Linkoping, Sweden
关键词
deep learning; DeepPneuNet; diagnosis prediction; infections; pneumonia; x-ray imaging; TUBERCULOSIS;
D O I
10.1111/coin.70029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper aims to develop a new deep learning model (DeepPneuNet) and evaluate its performance in predicting Pneumonia infection diagnosis based on patients' chest x-ray images. We have collected 5856 chest x-ray images that are labeled as either "pneumonia" or "normal" from a public forum. Before applying the DeepPneuNet model, a necessary feature extraction and feature mapping have been done on the input images. Conv2D layers with a 1 x 1 kernel size are followed by ReLU activation functions to make up the model. These layers are in charge of recognizing important patterns and features in the images. A MaxPooling 2D procedure is applied to minimize the spatial size of the feature maps after every two Conv2D layers. The sparse categorical cross-entropy loss function trains the model, and the Adam optimizer with a learning rate of 0.001 is used to optimize it. The DeepPneuNet provides 90.12% accuracy for diagnosis of the Pneumonia infection for a set of real-life test images. With 9,445,586 parameters, the DeepPneuNet model exhibits excellent parameter efficiency. DeepPneuNet is a more lightweight and computationally efficient alternative when compared to the other pre-trained models. We have compared accuracies for predicting Pneumonia diagnosis of our proposed DeepPneuNet model with some state-of-the-art deep learning models. The proposed DeepPneuNet model is more advantageous than the existing state-of-the-art learning models for Pneumonia diagnosis with respect to accuracy, precision, recall, F-score, training parameters, and training execution time.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Joint Diagnosis of Pneumonia, COVID-19, and Tuberculosis from Chest X-ray Images: A Deep Learning Approach
    Ahmed, Mohammed Salih
    Rahman, Atta
    AlGhamdi, Faris
    AlDakheel, Saleh
    Hakami, Hammam
    AlJumah, Ali
    AlIbrahim, Zuhair
    Youldash, Mustafa
    Alam Khan, Mohammad Aftab
    Basheer Ahmed, Mohammed Imran
    DIAGNOSTICS, 2023, 13 (15)
  • [22] Computer aided diagnosis using Harris Hawks optimizer with deep learning for pneumonia detection on chest X-ray images
    Parthasarathy V.
    Saravanan S.
    International Journal of Information Technology, 2024, 16 (3) : 1677 - 1683
  • [23] A Deep Learning Model for Diagnosing COVID-19 and Pneumonia through X-ray
    Liu, Xiangbin
    Wu, Wenqian
    Lin, Jerry Chun-Wei
    Liu, Shuai
    CURRENT MEDICAL IMAGING, 2023, 19 (04) : 333 - 346
  • [24] Deep Learning Models to Predict Fatal Pneumonia Using Chest X-Ray Images
    Anai, Satoshi
    Hisasue, Junko
    Takaki, Yoichi
    Hara, Naohiko
    CANADIAN RESPIRATORY JOURNAL, 2022, 2022
  • [25] Pneumonia detection in chest X-ray images using an ensemble of deep learning models
    Kundu, Rohit
    Das, Ritacheta
    Geem, Zong Woo
    Han, Gi-Tae
    Sarkar, Ram
    PLOS ONE, 2021, 16 (09):
  • [26] X-ray image-based pneumonia detection and classification using deep learning
    Asnake, Nigus Wereta
    Salau, Ayodeji Olalekan
    Ayalew, Aleka Melese
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (21) : 60789 - 60807
  • [27] A comparison of deep learning models for pneumonia detection from chest x-ray images
    Kadiroglu, Zehra
    Deniz, Erkan
    Senyigit, Abdurrahman
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2024, 39 (02): : 729 - 740
  • [28] Decision Making Systems for Pneumonia Detection using Deep Learning on X-Ray Images
    Kozhamkulova, Zhadra
    Nurlybaeva, Elmira
    Suleimenova, Madina
    Mukhammejanova, Dinargul
    Vorogushina, Marina
    Bidakhmet, Zhanar
    Maikotov, Mukhit
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (05) : 691 - 698
  • [29] Predicting COVID-19 Pneumonia Severity on Chest X-ray With Deep Learning
    Cohen, Joseph Paul
    Dao, Lan
    Morrison, Paul
    Roth, Karsten
    Bengio, Yoshua
    Shen, Beiyi
    Abbasi, Almas
    Hoshmand-Kochi, Mahsa
    Ghassemi, Marzyeh
    Li, Haifang
    Duong, Tim Q.
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2020, 12 (07)
  • [30] COVID Pneumonia Prediction Based on Chest X-Ray Images Using Deep Learning
    Khare, Akshat
    Patel, Pranjal
    Sankaranarayanan, Suresh
    Lorenz, Pascal
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 2580 - 2585