Some new properties of the beta function and Ramanujan R-function

被引:0
|
作者
Yang, Zhen-Hang [1 ]
Wang, Miao-Kun [2 ]
Zhao, Tie-Hong [3 ]
机构
[1] State Grid Zhejiang Elect Power Co Res Inst, Dept Sci & Technol, Hangzhou 310014, Zhejiang, Peoples R China
[2] Huzhou Univ, Dept Math, Huzhou 313000, Zhejiang, Peoples R China
[3] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Zhejiang, Peoples R China
来源
RAMANUJAN JOURNAL | 2025年 / 67卷 / 01期
关键词
Beta function; Ramanujan function; Power series; Hypergeometric series; Complete monotonicity; Monotonicity; GENERALIZED ELLIPTIC INTEGRALS; ASYMPTOTIC EXPANSIONS; INEQUALITIES; MONOTONICITY; BOUNDS;
D O I
10.1007/s11139-025-01062-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the power series and hypergeometric series representations of the beta function and the Ramanujan R-function with one parameter, Bx=Gamma x2 Gamma 2xandRx=-2 psi x-2 gamma,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathcal {B}}\left( x\right) =\frac{\Gamma \left( x\right) <^>{2}}{\Gamma \left( 2x\right) }\text { and }{\mathcal {R}}\left( x\right) =-2\psi \left( x\right) -2\gamma , \end{aligned}$$\end{document}are presented, which yield higher order monotonicity results related to B(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {B}}(x)$$\end{document} and R(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}(x)$$\end{document}; the decreasing property of the functions Rx/Bx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}\left( x\right) /{\mathcal {B}}\left( x\right) $$\end{document} and [B(x)-R(x)]/x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[ {\mathcal {B}}(x) -{\mathcal {R}}(x)] /x<^>{2}$$\end{document} on 0,infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 0,\infty \right) $$\end{document} is proved. Moreover, a conjecture put forward by Qiu et al. in [17] is proved to be true. As applications, several inequalities and identities are deduced. These results obtained in this paper may be helpful for the study of certain special functions. Finally, an interesting infinite series similar to the Riemann zeta functions is mentioned and a relevant problem is proposed.
引用
收藏
页数:25
相关论文
共 50 条
  • [31] R-function analysis of the thermally stressed state of an aircraft engine blade
    Rvachev, VL
    Shevchenko, AN
    Sizova, ND
    INTERNATIONAL APPLIED MECHANICS, 1996, 32 (02) : 117 - 121
  • [32] ON A FUNCTION OF RAMANUJAN
    LEIGHTON, W
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 58 (04) : 459 - 459
  • [33] Investigation into nonlinear vibrations of composite plates using the R-function theory
    Kurpa L.V.
    Timchenko G.N.
    Strength of Materials, 2007, 39 (5) : 529 - 538
  • [34] Some results on the beta function and the incomplete beta function
    Lin, Mongkolsery
    Fisher, Brian
    Orankitjaroen, Somsak
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2015, 8 (03)
  • [35] On R-function theory and its application in inverse problems of heat conduction
    Grzymkowski, R
    Korek, K
    ITI 2001: PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY INTERFACES, 2001, : 393 - 402
  • [36] R-function theory in unsteady problems of elastic-wave diffraction
    V. F. Kravchenko
    V. I. Pustovoit
    V. L. Rvachev
    N. D. Sizova
    Doklady Physics, 2001, 46 : 63 - 67
  • [37] Application of the R-function theory to diffraction of thermoelastic waves by complex objects
    Kravchenko, VF
    Pustovoit, VI
    Rvachev, VL
    Sizova, ND
    DOKLADY PHYSICS, 2000, 45 (06) : 288 - 290
  • [38] On geometric properties of the generating function for the Ramanujan sequence
    Bakan, Andrew
    Ruscheweyh, Stephan
    Salinas, Luis
    RAMANUJAN JOURNAL, 2018, 46 (01): : 173 - 188
  • [39] On geometric properties of the generating function for the Ramanujan sequence
    Andrew Bakan
    Stephan Ruscheweyh
    Luis Salinas
    The Ramanujan Journal, 2018, 46 : 173 - 188
  • [40] R-function method in problems of elastoplastic bending of plates of arbitrary shape
    L. V. Kurpa
    A. V. Arkhipov
    International Applied Mechanics, 1999, 35 : 76 - 80