Some new properties of the beta function and Ramanujan R-function

被引:0
|
作者
Yang, Zhen-Hang [1 ]
Wang, Miao-Kun [2 ]
Zhao, Tie-Hong [3 ]
机构
[1] State Grid Zhejiang Elect Power Co Res Inst, Dept Sci & Technol, Hangzhou 310014, Zhejiang, Peoples R China
[2] Huzhou Univ, Dept Math, Huzhou 313000, Zhejiang, Peoples R China
[3] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Zhejiang, Peoples R China
来源
RAMANUJAN JOURNAL | 2025年 / 67卷 / 01期
关键词
Beta function; Ramanujan function; Power series; Hypergeometric series; Complete monotonicity; Monotonicity; GENERALIZED ELLIPTIC INTEGRALS; ASYMPTOTIC EXPANSIONS; INEQUALITIES; MONOTONICITY; BOUNDS;
D O I
10.1007/s11139-025-01062-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the power series and hypergeometric series representations of the beta function and the Ramanujan R-function with one parameter, Bx=Gamma x2 Gamma 2xandRx=-2 psi x-2 gamma,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathcal {B}}\left( x\right) =\frac{\Gamma \left( x\right) <^>{2}}{\Gamma \left( 2x\right) }\text { and }{\mathcal {R}}\left( x\right) =-2\psi \left( x\right) -2\gamma , \end{aligned}$$\end{document}are presented, which yield higher order monotonicity results related to B(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathcal {B}}(x)$$\end{document} and R(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}(x)$$\end{document}; the decreasing property of the functions Rx/Bx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {R}}\left( x\right) /{\mathcal {B}}\left( x\right) $$\end{document} and [B(x)-R(x)]/x2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[ {\mathcal {B}}(x) -{\mathcal {R}}(x)] /x<^>{2}$$\end{document} on 0,infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( 0,\infty \right) $$\end{document} is proved. Moreover, a conjecture put forward by Qiu et al. in [17] is proved to be true. As applications, several inequalities and identities are deduced. These results obtained in this paper may be helpful for the study of certain special functions. Finally, an interesting infinite series similar to the Riemann zeta functions is mentioned and a relevant problem is proposed.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] New properties for the Ramanujan R-function
    Cai, Chuan-Yu
    Chen, Lu
    Huang, Ti-Ren
    Chu, Yuming
    OPEN MATHEMATICS, 2022, 20 (01): : 724 - 742
  • [2] Some new properties of the beta function and Ramanujan R-functionSome new properties of the beta function and Ramanujan R-functionZ.-H. Yang et al.
    Zhen-Hang Yang
    Miao-Kun Wang
    Tie-Hong Zhao
    The Ramanujan Journal, 2025, 67 (1)
  • [3] CONVEX PROPERTIES OF R-FUNCTION
    LIPOW, M
    AMERICAN MATHEMATICAL MONTHLY, 1972, 79 (08): : 917 - &
  • [4] Some properties of the difference between the Ramanujan constant and beta function
    Qiu, Song-Liang
    Ma, Xiao-Yan
    Huang, Ti-Ren
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (01) : 114 - 129
  • [5] SCATTERING RESONANCES AND R-FUNCTION
    TAKEUCHI, K
    MOLDAUER, PA
    PHYSICAL REVIEW C, 1970, 2 (03): : 920 - +
  • [6] CERTAIN NEW CONSTRUCTIVE MEANS OF R-FUNCTION METHOD
    RVACHEV, VL
    KOVAL, FF
    MANKO, GP
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1978, (08): : 691 - 694
  • [7] EXAMPLE OF A FUNCTION OF TWO VARIABLES THAT CANNOT BE AN R-FUNCTION
    Velichko, I. G.
    Stegantseva, P. G.
    UKRAINIAN MATHEMATICAL JOURNAL, 2010, 62 (02) : 308 - 313
  • [8] Example of a function of two variables that cannot be an R-function
    I. G. Velichko
    P. G. Stegantseva
    Ukrainian Mathematical Journal, 2010, 62 : 308 - 313
  • [9] Spline R-Function and Applications in FEM
    Yang, Tianhui
    Qarariyah, Ammar
    Deng, Jiansong
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2020, 13 (01): : 150 - 175
  • [10] NEW CONGRUENCE PROPERTIES FOR RAMANUJAN'S φ FUNCTION
    Xia, Ernest X. W.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (12) : 4985 - 4999