Universal IMU-Centric Spatiotemporal Calibration Algorithm for Heterogeneous Information

被引:0
|
作者
Shi, Yanfang [1 ]
Lian, Baowang [1 ]
Zeng, Yonghong [2 ]
Ma, Yugang [2 ]
Liu, Yangyang [1 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian, Shaanxi, Peoples R China
[2] Agcy Sci Technol & Res, Inst Infocomm Res, Singapore, Singapore
基金
中国国家自然科学基金; 新加坡国家研究基金会; 中国博士后科学基金;
关键词
Spatiotemporal calibration; Vision; LiDAR; Inertial;
D O I
10.1109/VTC2024-SPRING62846.2024.10683438
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Spatiotemporal calibration is an essential problem in the fusion system with heterogeneous multi-source information. Therefore, a universal spatiotemporal calibration algorithm for heterogeneous information is much needed. This paper proposes a universal spatiotemporal calibration technique with the inertial sensor as the central coordinate system. Firstly, it employs a high-order spline interpolation method to transform the output data of the inertial sensor into a continuous form. Subsequently, the calibration model is established by combining the output data from other sensors. The paper provides detailed descriptions of the spatiotemporal calibration models for LiDAR (Light Detection and Ranging) data, and visual data, respectively. In the simulations, the proposed calibration models are applied to existing open-source programs using publicly available datasets. The results demonstrate that, with the adoption of the proposed calibration algorithm, the position estimation accuracy of the fusion system can be improved by 39%.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Navigation System for a Wide Range of Tasks Based on IMU Aided with Heterogeneous Additional Information
    Kosyanchuk, V. V.
    Smirnov, A. S.
    Panyov, A. A.
    2015 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION (IPIN), 2015,
  • [32] Cache location selected algorithm for information-centric networking
    Wang X.
    Wang Z.
    Li F.
    Huang M.
    Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2019, 41 (01): : 152 - 160
  • [33] Visual SLAM Algorithm Combining Image Brightness Enhancement Module and IMU Information
    Wang, Bo
    Shen, Danfeng
    Bai, Pengfei
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (24)
  • [34] Self-calibration algorithm for an IMU in two-wheeled vehicles: design and experimental validation
    Gelmini, Simone
    Fouka, Majda
    Strada, Silvia
    Tanelli, Mara
    Savaresi, Sergio
    De Tommasi, Claudio
    2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2018, : 1751 - 1756
  • [35] Targetless Spatiotemporal Calibration of Multi-LiDAR Multi-IMU System Based on Continuous-Time Optimization
    Li, Shengyu
    Li, Xingxing
    Chen, Shuolong
    Zhou, Yuxuan
    Wang, Shiwen
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (05) : 7565 - 7575
  • [36] VI-SLAM algorithm with camera-IMU extrinsic automatic calibration and online estimation
    Pan L.
    Tian F.
    Ying W.
    Liang W.
    She B.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2019, 40 (06): : 56 - 67
  • [37] A Community Detection Algorithm for Heterogeneous Information Networks
    Liu, Dongjiang
    Li, Leixiao
    Ma, Zhiqiang
    IEEE ACCESS, 2020, 8 (195655-195663) : 195655 - 195663
  • [38] Combined Information Processing from GPS and IMU using Kalman Filtering Algorithm
    Bistrovs, V.
    Kluga, A.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2009, (05) : 15 - 20
  • [39] Privacy-centric Access Control for Distributed Heterogeneous Medical Information Systems
    Khan, Atif
    McKillop, Ian
    2013 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI 2013), 2013, : 297 - 306
  • [40] An information centric approach to heterogeneous multi-sensor integration for robotic applications
    Bruder, SBH
    ROBOTICS AND AUTONOMOUS SYSTEMS, 1999, 26 (04) : 255 - 280