Universal IMU-Centric Spatiotemporal Calibration Algorithm for Heterogeneous Information

被引:0
|
作者
Shi, Yanfang [1 ]
Lian, Baowang [1 ]
Zeng, Yonghong [2 ]
Ma, Yugang [2 ]
Liu, Yangyang [1 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian, Shaanxi, Peoples R China
[2] Agcy Sci Technol & Res, Inst Infocomm Res, Singapore, Singapore
基金
中国国家自然科学基金; 新加坡国家研究基金会; 中国博士后科学基金;
关键词
Spatiotemporal calibration; Vision; LiDAR; Inertial;
D O I
10.1109/VTC2024-SPRING62846.2024.10683438
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Spatiotemporal calibration is an essential problem in the fusion system with heterogeneous multi-source information. Therefore, a universal spatiotemporal calibration algorithm for heterogeneous information is much needed. This paper proposes a universal spatiotemporal calibration technique with the inertial sensor as the central coordinate system. Firstly, it employs a high-order spline interpolation method to transform the output data of the inertial sensor into a continuous form. Subsequently, the calibration model is established by combining the output data from other sensors. The paper provides detailed descriptions of the spatiotemporal calibration models for LiDAR (Light Detection and Ranging) data, and visual data, respectively. In the simulations, the proposed calibration models are applied to existing open-source programs using publicly available datasets. The results demonstrate that, with the adoption of the proposed calibration algorithm, the position estimation accuracy of the fusion system can be improved by 39%.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Spatiotemporal LiDAR-IMU-Camera Calibration: A Targetless and IMU-Centric Approach Based on Continuous-time Batch Optimization
    Liu, Hui
    Zhang, Xuebo
    Jiang, Jingqi
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 3535 - 3540
  • [2] Super Odometry: IMU-centric LiDAR-Visual-Inertial Estimator for Challenging Environments
    Zhao, Shibo
    Zhang, Hengrui
    Wang, Peng
    Nogueira, Lucas
    Scherer, Sebastian
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 8729 - 8736
  • [3] Precise and Robust IMU-Centric Vehicle Navigation via Tightly Integrating Multiple Homogeneous GNSS Terminals
    Shen, Zhiheng
    Li, Xingxing
    Li, Xin
    Xu, Zhili
    Wu, Zongzhou
    Zhou, Yuxuan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 14
  • [4] Pedestrian Gait-Enhanced LINS: A Robust, IMU-Centric LiDAR-Inertial Navigation System for Pedestrian
    Liao, Zongbo
    Zhang, Xuanxuan
    Zhang, Tianxiang
    Li, You
    IEEE SENSORS JOURNAL, 2025, 25 (07) : 11348 - 11356
  • [5] A Spatiotemporal Calibration Algorithm for IMU-LiDAR Navigation System Based on Similarity of Motion Trajectories
    Li, Yunhui
    Yang, Shize
    Xiu, Xianchao
    Miao, Zhonghua
    SENSORS, 2022, 22 (19)
  • [6] An Algorithm for the In-Field Calibration of a MEMS IMU
    Qureshi, Umar
    Golnaraghi, Farid
    IEEE SENSORS JOURNAL, 2017, 17 (22) : 7479 - 7486
  • [7] Turntable IMU Calibration Algorithm Based on the Fourier Transform Technique
    Bolotin, Yury
    Savin, Vladimir
    SENSORS, 2023, 23 (02)
  • [8] Sensor Fusion Algorithm and Calibration for a Gyroscope-free IMU
    Schopp, P.
    Klingbeil, L.
    Peters, C.
    Buhmann, A.
    Manoli, Y.
    PROCEEDINGS OF THE EUROSENSORS XXIII CONFERENCE, 2009, 1 (01): : 1323 - +
  • [9] Continuous-Time Spatiotemporal Calibration of a Rolling Shutter Camera-IMU System
    Huai, Jianzhu
    Zhuang, Yuan
    Lin, Yukai
    Jozkow, Grzegorz
    Yuan, Qicheng
    Chen, Dong
    IEEE SENSORS JOURNAL, 2022, 22 (08) : 7920 - 7930
  • [10] A kalman filter-based algorithm for IMU-Camera calibration
    Mirzaei, Faraz M.
    Rourneliotis, Stergios I.
    2007 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-9, 2007, : 2433 - 2440