Machine Learning-based Macrophage Signature for Predicting Prognosis and Immunotherapy Benefits in Cholangiocarcinoma

被引:1
|
作者
Huang, Junkai [1 ]
Chen, Yu [1 ]
Tan, Zhiguo [2 ]
Song, Yinghui [3 ]
Chen, Kang [1 ]
Liu, Sulai [1 ]
Peng, Chuang [1 ]
Chen, Xu [1 ]
机构
[1] Hunan Normal Univ, Hunan Prov Peoples Hosp, Dept Hepatobiliary Surg, Affiliated Hosp 1, Changsha 410005, Hunan, Peoples R China
[2] Lanzhou Univ, Sch Clin Med 1, Lanzhou 730000, Gansu, Peoples R China
[3] Hunan Normal Univ, Hunan Prov Peoples Hosp, Dept Cent Lab, Affiliated Hosp 1, Changsha 410005, Hunan, Peoples R China
关键词
Macrophage; machine learning; cholangiocarcinoma; prognostic signature; immunotherapy; INTRAHEPATIC CHOLANGIOCARCINOMA; PROLIFERATION; INVASION; PROGRESSION; HETEROGENEITY; EMT;
D O I
10.2174/0109298673342462241010072026
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Aims We aimed to develop a macrophage signature for predicting clinical outcomes and immunotherapy benefits in cholangiocarcinoma.Background Macrophages are potent immune effector cells that can change phenotype in different environments to exert anti-tumor and anti-tumor functions. The role of macrophages in the prognosis and therapy benefits of cholangiocarcinoma was not fully clarified.Objective The objective of this study is to develop a prognostic model for cholangiocarcinoma.Methods The macrophage-related signature (MRS) was developed using 10 machine learning methods with TCGA, GSE89748 and GSE107943 datasets. Several indicators (TIDE score, TMB score and MATH score) and two immunotherapy datasets (IMvigor210 and GSE91061) were used to investigate the performance of MRS in predicting the benefits of immunotherapy.Results The Lasso + CoxBoost method's MRS was considered a robust and stable model that demonstrated good accuracy in predicting the clinical outcome of patients with cholangiocarcinoma; the AUC of the 2-, 3-, and 4-year ROC curves in the TCGA dataset were 0.965, 0.957, and 1.000. Moreover, MRS acted as an independent risk factor for the clinical outcome of cholangiocarcinoma cases. Cholangiocarcinoma cases with higher MRS scores are correlated with a higher TIDE score, higher tumor escape score, higher MATH score, and lower TMB score. Further analysis suggested high MRS score indicated a higher gene set score correlated with cancer-related hallmarks.Conclusion With regard to cholangiocarcinoma, the current study created a machine learning-based MRS that served as an indication for forecasting the prognosis and therapeutic advantages of individual cases.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Advancing predictive markers in lung adenocarcinoma: A machine learning-based immunotherapy prognostic prediction signature
    Li, Zhongyan
    Pei, Shengbin
    Wang, Yanjuan
    Zhang, Ge
    Lin, Haoran
    Dong, Shiyang
    ENVIRONMENTAL TOXICOLOGY, 2024, 39 (10) : 4581 - 4593
  • [32] A machine learning-based radiomics approach to predict MUC4 mutation and response to immunotherapy in cholangiocarcinoma
    Jia, Yunlu
    Luo, Xiao
    Wang, Junli
    Ruan, Jian
    JOURNAL OF CLINICAL ONCOLOGY, 2024, 42 (16)
  • [33] A machine learning-based integrated clinical model for predicting prognosis in atypical meningioma patients
    Dengpan Song
    Mingchu Zhang
    Chengcheng Duan
    Mingkun Wei
    Dingkang Xu
    Yuan An
    Longxiao Zhang
    Fang Wang
    Mengzhao Feng
    Zhihong Qian
    Qiang Gao
    Fuyou Guo
    Acta Neurochirurgica, 2023, 165 : 4191 - 4201
  • [34] A machine learning-based integrated clinical model for predicting prognosis in atypical meningioma patients
    Song, Dengpan
    Zhang, Mingchu
    Duan, Chengcheng
    Wei, Mingkun
    Xu, Dingkang
    An, Yuan
    Zhang, Longxiao
    Wang, Fang
    Feng, Mengzhao
    Qian, Zhihong
    Gao, Qiang
    Guo, Fuyou
    ACTA NEUROCHIRURGICA, 2023, 165 (12) : 4191 - 4201
  • [35] A machine learning-based immune response signature to facilitate prognosis prediction in patients with endometrial cancer
    Wang, Xiaofeng
    Guan, Jing
    Feng, Li
    Li, Qingxue
    Zhao, Liwei
    Li, Yue
    Ma, Ruixiao
    Shi, Mengnan
    Han, Biaogang
    Hao, Guorong
    Wang, Lina
    Li, Hui
    Wang, Xiuli
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [36] Construction of a tumor immune infiltration macrophage signature for predicting prognosis and immunotherapy response in liver cancer
    Huang, Anmin
    Lv, Bei
    Zhang, Yunjie
    Yang, Junhui
    Li, Jie
    Li, Chengjun
    Yu, Zhijie
    Xia, Jinglin
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [37] Machine learning-based tumor-infiltrating immune cell-associated lncRNAs for predicting prognosis and immunotherapy response in patients with glioblastoma
    Zhang, Hao
    Zhang, Nan
    Wu, Wantao
    Zhou, Ran
    Li, Shuyu
    Wang, Zeyu
    Dai, Ziyu
    Zhang, Liyang
    Liu, Zaoqu
    Zhang, Jian
    Luo, Peng
    Liu, Zhixiong
    Cheng, Quan
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (06)
  • [38] A basement membrane-related signature for prognosis and immunotherapy benefit in bladder cancer based on machine learning
    Zhang, Yunuo
    Wu, Jingna
    Liang, Xinhong
    DISCOVER ONCOLOGY, 2024, 15 (01)
  • [39] Assessment of AURKA expression and prognosis prediction in lung adenocarcinoma using machine learning-based pathomics signature
    Bai, Cuiqing
    Sun, Yan
    Zhang, Xiuqin
    Zuo, Zhitong
    HELIYON, 2024, 10 (12)
  • [40] Machine learning-based prognosis signature for survival prediction of patients with clear cell renal cell carcinoma
    Chen, Siteng
    Guo, Tuanjie
    Zhang, Encheng
    Wang, Tao
    Jiang, Guangliang
    Wu, Yishuo
    Wang, Xiang
    Na, Rong
    Zhang, Ning
    HELIYON, 2022, 8 (09)