Decentralized Robust Data-Driven Predictive Control for Smoothing Mixed Traffic Flow

被引:0
|
作者
Shang, Xu [1 ]
Wang, Jiawei [2 ]
Zheng, Yang [1 ]
机构
[1] Univ Calif San Diego, Dept Elect & Comp Engn, San Diego, CA 92093 USA
[2] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA
关键词
Safety; Predictive control; Computational modeling; Optimization; Estimation; Data privacy; Cruise control; Robustness; Computational efficiency; Vehicle dynamics; Connected vehicles; mixed traffic; data-driven control; model predictive control (MPC); decentralized control; SYSTEMS; MODEL;
D O I
10.1109/TITS.2024.3514117
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In a mixed traffic with connected automated vehicles (CAVs) and human-driven vehicles (HDVs), data-driven predictive control of CAVs promises system-wide traffic performance improvements. Yet, most existing approaches focus on a centralized setup, which is computationally unscalable while failing to protect data privacy. The robustness against unknown disturbances has not been well addressed either, causing safety concerns. In this paper, we propose a decentralized robust DeeP-LCC (Data-EnablEd Predictive Leading Cruise Control) approach for CAVs to smooth mixed traffic. In particular, each CAV computes its control input based on locally available data from its involved subsystem. Meanwhile, the interaction between neighboring subsystems is modeled as a bounded disturbance, for which appropriate estimation methods are proposed. Then, we formulate a robust optimization problem and present its tractable computational solutions. Compared with the centralized formulation, our method greatly reduces computation complexity with better safety performance, while naturally preserving data privacy. Extensive traffic simulations validate its wave-dampening ability, safety performance, and computational benefits.
引用
收藏
页码:2075 / 2090
页数:16
相关论文
共 50 条
  • [21] Multistage Model Predictive Control based on Data-Driven Distributionally Robust Optimization
    Lu, Shuwen
    You, Fengqi
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 1907 - 1912
  • [22] Constrained robust model predictive control embedded with a new data-driven technique
    Yang, L.
    Lu, J.
    Xu, Y.
    Li, D.
    Xi, Y.
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (16): : 2395 - 2405
  • [23] Robust Stability Analysis of a Simple Data-Driven Model Predictive Control Approach
    Bongard, Joscha
    Berberich, Julian
    Koehler, Johannes
    Allgoewer, Frank
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (05) : 2625 - 2637
  • [24] Robust Data-Driven Predictive Control for Linear Time-Varying Systems
    Hu, Kaijian
    Liu, Tao
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 910 - 915
  • [25] Privacy Preserving for Switched Systems Under Robust Data-Driven Predictive Control
    Qi, Yiwen
    Guo, Shitong
    Chi, Ronghu
    Tang, Yiwen
    Qu, Ziyu
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2025, 55 (01): : 480 - 490
  • [26] A novel constraint-tightening approach for robust data-driven predictive control
    Kloeppelt, Christian
    Berberich, Julian
    Allgoewer, Frank
    Mueller, Matthias A.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2022,
  • [27] Data-driven models for traffic flow at junctions
    Herty, Michael
    Kolbe, Niklas
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (11) : 8946 - 8968
  • [28] Flow Reconstruction for Data-Driven Traffic Animation
    Wilkie, David
    Sewall, Jason
    Lin, Ming
    ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (04):
  • [29] A Unified Framework for Data-Driven Optimal Control of Connected Vehicles in Mixed Traffic
    Liu, Tong
    Cui, Leilei
    Pang, Bo
    Jiang, Zhong-Ping
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (08): : 4131 - 4145
  • [30] Safe and robust data-driven cooperative control policy for mixed vehicle platoons
    Lan, Jianglin
    Zhao, Dezong
    Tian, Daxin
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (07) : 4171 - 4190