Enhancing Road Surface Temperature Prediction: A Novel Approach Integrating Transfer Learning with Long Short-Term Memory Neural Networks

被引:0
|
作者
Bai, Shumin [1 ,2 ]
Dai, Bingyou [1 ,2 ]
Yang, Zhen [1 ]
Zhu, Feng [3 ]
Yang, Wenchen [2 ,4 ]
Li, Yong [5 ,6 ]
机构
[1] Tongji Univ, Key Lab Rd & Traff Engn, Minist Educ, Shanghai 201804, Peoples R China
[2] Broadvis Engn Consultants Co Ltd, Natl Engn Res Ctr Geol Disaster Prevent Land Trans, Kunming 650200, Peoples R China
[3] Nanyang Technol Univ, Sch Civil & Environm Engn, Singapore 639798, Singapore
[4] Yunnan Commun Investment & Construct Grp Co Ltd, Yunnan Key Lab Digital Commun, Kunming 650041, Peoples R China
[5] Observat Stn Nanjing Meteorol Bur, Nanjing 210036, Peoples R China
[6] China Meteorol Adm, Key Lab Transportat Meteorol, Nanjing 210008, Peoples R China
关键词
Road surface temperature prediction; Transfer learning (TL); Long short-term memory (LSTM) neural networks; Road weather information system (RWIS); PAVEMENT; MODEL;
D O I
10.1061/JPEODX.PVENG-1616
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Timely and accurate prediction of winter road surface temperature is crucial for the effective operation of a road weather information system (RWIS), which is essential to road traffic safety. A major challenge in achieving high-precision predictions is the lack of extensive data, particularly in newly established road weather stations. To address this challenge, this study proposes a transfer learning and long short-term memory network-based (TL-LSTM) model for road surface temperature prediction. This model is designed to overcome the accuracy limitation typically encountered in small sample modeling. First, the pretrained model containing the long short-term memory (LSTM) network feature extraction module and prediction module is constructed, which learn the pattern in road temperature time series using the long-term data from the established road weather station. Subsequently, the pretrained model is transferred to the target road weather station data set with a small sample for fine-tuning weights to determine the optimal transfer strategy. The results show that the best prediction performance is achieved when freezing the LSTM feature extraction module and the first two fully connected layers of the predictor module. In the case of small samples, the TL-LSTM model improves accuracy by 30% compared to the baseline model, achieving a mean absolute error (MAE) of 0.673, a mean square error (MSE) of 1.314, and a mean absolute percentage error (MAPE) of 12.8%. Notably, the model performs particularly well in the low-temperature range (-5 degrees C to 5 degrees C). It adeptly identifies the periodic fluctuations and uncertainties in road surface temperature. During both cloudy and sunny conditions, its forecasts align closely with the observed values, demonstrating the model's robust reliability.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Transfer Learning for Photovoltaic Power Forecasting with Long Short-Term Memory Neural Network
    Zhou, Siyu
    Zhou, Lin
    Mao, Mingxuan
    Xi, Xinze
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 125 - 132
  • [32] Enhancing next destination prediction: A novel long short-term memory neural network approach using real-world airline data
    Salihoglu, Salih
    Koksal, Gulser
    Abar, Orhan
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 138
  • [33] A maze learning comparison of Elman, long short-term memory, and Mona neural networks
    Portegys, Thomas E.
    NEURAL NETWORKS, 2010, 23 (02) : 306 - 313
  • [34] A System for Learning Atoms Based on Long Short-Term Memory Recurrent Neural Networks
    Quan, Zhe
    Lin, Xuan
    Wang, Zhi-Jie
    Liu, Yan
    Wang, Fan
    Li, Kenli
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 728 - 733
  • [35] Accelerating Inference In Long Short-Term Memory Neural Networks
    Mealey, Thomas
    Taha, Tarek M.
    NAECON 2018 - IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE, 2018, : 382 - 390
  • [36] A Novel Approach to Protein Folding Prediction based on Long Short-Term Memory Networks: A Preliminary Investigation and Analysis
    Hattori, Leandro Takeshi
    Vargas Benitez, Cesar Manuel
    Gutoski, Matheus
    Romero Aquino, Nelson Marcelo
    Lopes, Heitor Silverio
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [37] Enhancing long short-term memory (LSTM)-based streamflow prediction with a spatially distributed approach
    Yu, Qiutong
    Tolson, Bryan A.
    Shen, Hongren
    Han, Ming
    Mai, Juliane
    Lin, Jimmy
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2024, 28 (09) : 2107 - 2122
  • [38] Temperature Prediction Based on Long Short Term Memory Networks
    Wu, Fred
    Lu, Shaofei
    Armando, Lopez-Aeamburo
    She, Jingke
    2019 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2019), 2019, : 312 - 317
  • [39] ANALYSIS AND COMPARISON OF LONG SHORT-TERM MEMORY NETWORKS SHORT-TERM TRAFFIC PREDICTION PERFORMANCE
    Dogan, Erdem
    SCIENTIFIC JOURNAL OF SILESIAN UNIVERSITY OF TECHNOLOGY-SERIES TRANSPORT, 2020, 107 : 19 - 32
  • [40] Predicting Surface Air Temperature Using Convolutional Long Short-Term Memory Networks
    Wagle, Sanket
    Uttamani, Saral
    Dsouza, Sasha
    Devadkar, Kailas
    ICCCE 2019: PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND CYBER-PHYSICAL ENGINEERING, 2020, 570 : 183 - 188