FriendRec: A Graph Neural Network for Friend Recommendation

被引:0
|
作者
Bai, Yun [1 ]
Lai, Zanyou [1 ]
机构
[1] Guangdong Univ Technol, Guangzhou, Guangdong, Peoples R China
关键词
Social Networks; Friend Recommendation; Graph Neural Networks;
D O I
10.1007/978-981-97-9440-9_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The friend recommendation service is instrumental in molding and enhancing the expansion of online social networks. Graph Neural Networks (GNNs) have become a powerful tool for learning graph data and have been widely used in the design of recommender systems, as they can effectively aggregate the neighborhood representation of nodes. The basic idea of GNNs-based recommender systems is to utilize GNNs to aggregate a user's neighborhood information in the user-user graph and the user-item graph. For friend recommendation, combining users' neighborhood information in the user-user graph and the user-item graph makes recommendations more diverse. However, one of the challenges is how to effectively combine the neighborhood information of users from the two graphs. In addition, since users usually have many items to interact with, accurately analyzing the user's personal preferences is a challenging task. In this paper, we present a GNNs-based framework (FriendRec) for friend recommendations. We first utilize GNNs to aggregate social representation and interest representation, respectively. Then we fuse two kinds of representations with a different strategy from previous works. In particular, we design a special layer to aggregate interest representation, which achieves 5% uplift compared with state-of-the-art recommendation model. Compared to fusing representations with deep neural networks, FriendRec significantly reduces the number of parameters, making it easier to train.
引用
收藏
页码:385 / 397
页数:13
相关论文
共 50 条
  • [31] Research on Recommendation Algorithm Based on Heterogeneous Graph neural Network
    Chen Z.
    Li H.
    Du J.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2021, 48 (10): : 137 - 144
  • [32] Enhanced graph neural network for session-based recommendation
    Sheng, Zhenzhen
    Zhang, Tao
    Zhang, Yuejie
    Gao, Shang
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [33] Personalized recommendation via inductive spatiotemporal graph neural network
    Gong, Jibing
    Zhao, Yi
    Zhao, Jinye
    Zhang, Jin
    Ma, Guixiang
    Zheng, Shaojie
    Du, Shuying
    Tang, Jie
    PATTERN RECOGNITION, 2024, 145
  • [34] Multi-dimensional Graph Neural Network for Sequential Recommendation
    Hao, Yongjing
    Ma, Jun
    Zhao, Pengpeng
    Liu, Guanfeng
    Xian, Xuefeng
    Zhao, Lei
    Sheng, Victor S.
    PATTERN RECOGNITION, 2023, 139
  • [35] Decentralized Graph Neural Network for Privacy-Preserving Recommendation
    Zheng, Xiaolin
    Wang, Zhongyu
    Chen, Chaochao
    Qian, Jiashu
    Yang, Yao
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 3494 - 3504
  • [36] Order-Aware Graph Neural Network for Sequential Recommendation
    Zhang, Xinlei
    Ji, Wendi
    Yuan, Jiahao
    Wang, Xiaoling
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2022, PT I, 2022, 13280 : 290 - 302
  • [37] A Session Recommendation Model Based on Heterogeneous Graph Neural Network
    An, Zhiwei
    Tan, Yirui
    Zhang, Jinli
    Jiang, Zongli
    Li, Chen
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT III, KSEM 2023, 2023, 14119 : 160 - 171
  • [38] LegalGNN: Legal Information Enhanced Graph Neural Network for Recommendation
    Yang, Jun
    Ma, Weizhi
    Zhang, Min
    Zhou, Xin
    Liu, Yiqun
    Ma, Shaoping
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2022, 40 (02)
  • [39] Attention-Based Graph Neural Network for News Recommendation
    Ji, Zhenyan
    Wu, Mengdan
    Liu, Jirui
    Armendariz Inigo, Jose Enrique
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [40] A survey of graph neural network based recommendation in social networks
    Li, Xiao
    Sun, Li
    Ling, Mengjie
    Peng, Yan
    NEUROCOMPUTING, 2023, 549