Evaluating machine learning models for stellar spectral classification using Gaia DR3

被引:0
|
作者
Gupta, Ayush [1 ]
Jain, Chetana [1 ]
Kaur, Baljeet [2 ]
机构
[1] Univ Delhi, Hansraj Coll, Dept Phys, Delhi, India
[2] Univ Delhi, Hansraj Coll, Dept Comp Sci, Delhi, India
关键词
astronomy; stellar spectral classification; supervised machine learning; feature selection;
D O I
10.1088/1402-4896/adb65d
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work evaluates the machine learning models for stellar spectral classification based on the third data release (DR3) of Gaia. We have examined how different machine learning models and feature selection techniques impact the classification accuracy. We have used seven supervised machine learning algorithms (Decision Tree, k-Nearest Neighbour, Naive Bayes classifier, Artificial Neural Networks, Random Forest and Support Vector Machine) for performing Morgan-Keenan spectral classification of A, F, G, K and M type stars. For feature selection, we used four different methods (Mutual Information, chi 2, F-test and Pearson Correlation). The Mutual Information feature selection method gave the best performance with an average accuracy of 88.76% across all models. The Artificial Neural Networks classifier showed the highest average accuracy of 90.97% across the four feature selection methods. The combination of Mutual Information feature selection and Artificial Neural Network has given the best classification accuracy of 91.43%. The four feature selection methods identified ten common features (RAICRS (deg), G (mag), BP (mag), log g (cgs), Teff (K), R (R circle dot), M (M circle dot), t (Gyr), z (km s-1) and Evol) that dominate the spectral classification. We discuss the implication of these selected features based on our understanding of astrophysical parameters associated with various spectral classes. Based on our review of the literature, this appears to be the first detailed and robust empirical study with Gaia DR3.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Ultracool spectroscopic outliers in Gaia DR3
    Cooper, W. J.
    Smart, R. L.
    Jones, H. R. A.
    Sarro, L. M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 527 (01) : 1521 - 1533
  • [22] Binary masses and luminosities with Gaia DR3
    Chevalier, S.
    Babusiaux, C.
    Merle, T.
    Arenou, F.
    ASTRONOMY & ASTROPHYSICS, 2023, 678
  • [23] Galactic runaway O and Be stars found using Gaia DR3
    Carretero-Castrillo, M.
    Ribo, M.
    Paredes, J. M.
    ASTRONOMY & ASTROPHYSICS, 2023, 679
  • [24] Advanced classification of hot subdwarf binaries using artificial intelligence techniques and Gaia DR3 data
    Vazquez, C. Viscasillas
    Solano, E.
    Ulla, A.
    Ambrosch, M.
    Alvarez, M. A.
    Manteiga, M.
    Magrini, L.
    Santovena-Gomez, R.
    Dafonte, C.
    Perez-Fernandez, E.
    Aller, A.
    Drazdauskas, A.
    Mikolaitis, S.
    Rodrigo, C.
    ASTRONOMY & ASTROPHYSICS, 2024, 691
  • [25] Stellar ages, masses, extinctions, and orbital parameters based on spectroscopic parameters of Gaia DR3
    Kordopatis, G.
    Schultheis, M.
    McMillan, P. J.
    Palicio, P. A.
    de Laverny, P.
    Recio-Blanco, A.
    Creevey, O.
    alvarez, M. A.
    Andrae, R.
    Poggio, E.
    Spitoni, E.
    Contursi, G.
    Zhao, H.
    Oreshina-Slezak, I.
    Ordenovic, C.
    Bijaoui, A.
    ASTRONOMY & ASTROPHYSICS, 2023, 669
  • [26] Advanced classification of hot subdwarf binaries using artificial intelligence techniques and Gaia DR3 data
    Viscasillas Vázquez, C.
    Solano, E.
    Ulla, A.
    Ambrosch, M.
    Álvarez, M.A.
    Manteiga, M.
    Magrini, L.
    Santoveña-Gómez, R.
    Dafonte, C.
    Pérez-Fernández, E.
    Aller, A.
    Drazdauskas, A.
    Mikolaitis, Š.
    Rodrigo, C.
    Astronomy and Astrophysics, 1600, 691
  • [27] Kinematic analysis of the Large Magellanic Cloud using Gaia DR3
    Jimenez-Arranz, O.
    Romero-Gomez, M.
    Luri, X.
    McMillan, P. J.
    Antoja, T.
    Chemin, L.
    Roca-Fabrega, S.
    Masana, E.
    Muros, A.
    ASTRONOMY & ASTROPHYSICS, 2023, 669
  • [28] Identification of new nearby white dwarfs using Gaia DR3
    Golovin, Alex
    Reffert, Sabine
    Vani, Akash
    Bastian, Ulrich
    Jordan, Stefan
    Just, Andreas
    Astronomy and Astrophysics, 2024, 683
  • [29] Identification of new nearby white dwarfs using Gaia DR3
    Golovin, Alex
    Reffert, Sabine
    Vani, Akash
    Bastian, Ulrich
    Jordan, Stefan
    Just, Andreas
    ASTRONOMY & ASTROPHYSICS, 2024, 683
  • [30] Revisiting the local interstellar radiation field using Gaia DR3
    Bianchi, S.
    ASTRONOMY & ASTROPHYSICS, 2024, 691