On Convergence of Toeplitz Quantization of the Sphere

被引:1
|
作者
Li, Yanlin [1 ]
Bouleryah, Mohamed Lemine H. [2 ]
Ali, Akram [2 ]
机构
[1] Hangzhou Normal Univ, Sch Math, Hangzhou 311121, Peoples R China
[2] King Khalid Univ, Coll Sci, Dept Math, Abha 61413, Saudi Arabia
关键词
complex line bundle; symplectic geometry; Toeplitz quantization; decreasing rearrangement; spectral measure; SUBMANIFOLDS;
D O I
10.3390/math12223565
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give an explicit expression of the Toeplitz quantization of a C infinity smooth function on the sphere and show that the sequence of spectra of Toeplitz quantization of the function determines its decreasing rearrangement. We also use Toeplitz quantization to prove a version of Szeg & ouml;'s Theorem.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Berezin–Toeplitz Quantization and Invariant Symbolic Calculi
    Miroslav Engliš
    Letters in Mathematical Physics, 2003, 65 : 59 - 74
  • [32] Toeplitz Quantization and Asymptotic Expansions: Geometric Construction
    Englis, Miroslav
    Upmeier, Harald
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
  • [33] Berezin-Toeplitz quantization and Berezin transform
    Schlichenmaier, M
    LONG TIME BEHAVIOUR OF CLASSICAL AND QUANTUM SYSTEMS, 2001, 1 : 271 - 287
  • [34] Identification of Berezin-Toeplitz deformation quantization
    Karabegov, AV
    Schlichenmaier, M
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2001, 540 : 49 - 76
  • [35] Quantization of the sphere with coherent states
    Rey, ML
    Gazeau, JP
    Huguet, E
    Renaud, J
    Garidi, T
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2003, 42 (06) : 1291 - 1300
  • [36] Hopf map and quantization on sphere
    Ikemori, H
    Kitakado, S
    Otsu, H
    Sato, T
    MODERN PHYSICS LETTERS A, 1999, 14 (38) : 2649 - 2655
  • [37] Path integral quantization of the sphere
    Reartes, W
    NEW ADVANCES IN CELESTIAL MECHANICS AND HAMILTONIAN SYSTEMS, 2004, : 225 - 237
  • [38] Quantization of the Sphere with Coherent States
    Marc Lachièze Rey
    Jean-Pierre Gazeau
    Eric Huguet
    Jacques Renaud
    Tarik Garidi
    International Journal of Theoretical Physics, 2003, 42 (6) : 1301 - 1310
  • [39] Landau level quantization on the sphere
    Greiter, Martin
    PHYSICAL REVIEW B, 2011, 83 (11):
  • [40] LANDAU QUANTIZATION OF ELECTRONS ON A SPHERE
    AOKI, H
    SUEZAWA, H
    PHYSICAL REVIEW A, 1992, 46 (03): : R1163 - R1166