Synchronization of Multi-Term Fractional-Order Neural Networks with Switching Parameters via Hybrid Impulsive Control

被引:0
|
作者
Yang, Dongsheng [1 ]
Wang, Hu [2 ]
Zhang, Xiaoli [1 ]
Yu, Yongguang [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
[2] Cent Univ Finance & Econ, Sch Math & Stat, Beijing 100081, Peoples R China
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 12期
基金
中国国家自然科学基金;
关键词
drive-response synchronization; multi-term fractional-order; switched neural network; impulsive control; STABILITY;
D O I
10.1016/j.ifacol.2024.08.198
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the hybrid impulsive control synchronization problem of multi-term fractional-order neural networks (MFNNs) with switching parameters. Firstly, a novel MFNN with switching parameters model is introduced by incorporating multi-term Caputo fractional-order derivative to extend the existing framework for fractional-order cases. Then, the relationship between multi-term fractional-order derivative and distributed-order derivative is analyzed, and a synchronization criterion for a class of multi-term fractional-order impulsive switched systems is derived by utilizing the properties of the distributed-order derivative weight function. Furthermore, a hybrid impulsive controller is designed to obtain sufficient conditions for synchronization of MFNNs with switching parameters. To validate the effectiveness of the obtained conclusions, a numerical example is presented to demonstrate the validity of the proposed MFNN model and synchronization criterion. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:249 / 253
页数:5
相关论文
共 50 条
  • [41] Hybrid Projective Synchronization of Fractional-Order Neural Networks with Time Delays
    Velmurugan, G.
    Rakkiyappan, R.
    MATHEMATICAL ANALYSIS AND ITS APPLICATIONS, 2015, 143 : 645 - 655
  • [42] α-stability and α-synchronization for fractional-order neural networks
    Yu, Juan
    Hu, Cheng
    Jiang, Haijun
    NEURAL NETWORKS, 2012, 35 : 82 - 87
  • [43] Adaptive impulsive synchronization for fractional-order quaternion-valued neural networks with different structures and unknown parameters
    Zhang, Xingpeng
    He, Dong
    JOURNAL OF VIBRATION AND CONTROL, 2024, 30 (23-24) : 5344 - 5357
  • [44] Projective synchronization of fractional-order memristive neural networks with switching jumps mismatch
    Zhang, Lingzhong
    Yang, Yongqing
    Wang, Fei
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 471 : 402 - 415
  • [45] Global Mittag-Leffler Synchronization for Impulsive Fractional-Order Neural Networks with Delays
    Rifhat, Ramziya
    Muhammadhaji, Ahmadjan
    Teng, Zhidong
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2018, 19 (02) : 205 - 213
  • [46] The Optimization of Synchronization Control Parameters for Fractional-Order Delayed Memristive Neural Networks Using SIWPSO
    Qi Chang
    Aihua Hu
    Yongqing Yang
    Li Li
    Neural Processing Letters, 2020, 51 : 1541 - 1556
  • [47] The Optimization of Synchronization Control Parameters for Fractional-Order Delayed Memristive Neural Networks Using SIWPSO
    Chang, Qi
    Hu, Aihua
    Yang, Yongqing
    Li, Li
    NEURAL PROCESSING LETTERS, 2020, 51 (02) : 1541 - 1556
  • [48] Lag synchronization for fractional-order memristive neural networks with time delay via switching jumps mismatch
    Zhang, Lingzhong
    Yang, Yongqing
    Wang, Fei
    Sui, Xin
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2018, 355 (03): : 1217 - 1240
  • [49] Quantized Control for Synchronization of Delayed Fractional-Order Memristive Neural Networks
    Fan, Yingjie
    Huang, Xia
    Wang, Zhen
    Xia, Jianwei
    Shen, Hao
    NEURAL PROCESSING LETTERS, 2020, 52 (01) : 403 - 419
  • [50] Quantized Control for Synchronization of Delayed Fractional-Order Memristive Neural Networks
    Yingjie Fan
    Xia Huang
    Zhen Wang
    Jianwei Xia
    Hao Shen
    Neural Processing Letters, 2020, 52 : 403 - 419