Synchronization of Multi-Term Fractional-Order Neural Networks with Switching Parameters via Hybrid Impulsive Control

被引:0
|
作者
Yang, Dongsheng [1 ]
Wang, Hu [2 ]
Zhang, Xiaoli [1 ]
Yu, Yongguang [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing 100044, Peoples R China
[2] Cent Univ Finance & Econ, Sch Math & Stat, Beijing 100081, Peoples R China
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 12期
基金
中国国家自然科学基金;
关键词
drive-response synchronization; multi-term fractional-order; switched neural network; impulsive control; STABILITY;
D O I
10.1016/j.ifacol.2024.08.198
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates the hybrid impulsive control synchronization problem of multi-term fractional-order neural networks (MFNNs) with switching parameters. Firstly, a novel MFNN with switching parameters model is introduced by incorporating multi-term Caputo fractional-order derivative to extend the existing framework for fractional-order cases. Then, the relationship between multi-term fractional-order derivative and distributed-order derivative is analyzed, and a synchronization criterion for a class of multi-term fractional-order impulsive switched systems is derived by utilizing the properties of the distributed-order derivative weight function. Furthermore, a hybrid impulsive controller is designed to obtain sufficient conditions for synchronization of MFNNs with switching parameters. To validate the effectiveness of the obtained conclusions, a numerical example is presented to demonstrate the validity of the proposed MFNN model and synchronization criterion. Copyright (C) 2024 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页码:249 / 253
页数:5
相关论文
共 50 条
  • [1] Multi-quasi-synchronization of coupled fractional-order neural networks with delays via pinning impulsive control
    Xiaoli Ruan
    Ailong Wu
    Advances in Difference Equations, 2017
  • [2] Multi-quasi-synchronization of coupled fractional-order neural networks with delays via pinning impulsive control
    Ruan, Xiaoli
    Wu, Ailong
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [3] Quasi-Synchronization of Nonidentical Fractional-Order Memristive Neural Networks via Impulsive Control
    Chen, Ruihan
    Zhao, Tianfeng
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [4] Global Mittag-Leffler Synchronization of Fractional-Order Neural Networks Via Impulsive Control
    Xujun Yang
    Chuandong Li
    Tingwen Huang
    Qiankun Song
    Junjian Huang
    Neural Processing Letters, 2018, 48 : 459 - 479
  • [5] Global Mittag-Leffler Synchronization of Fractional-Order Neural Networks Via Impulsive Control
    Yang, Xujun
    Li, Chuandong
    Huang, Tingwen
    Song, Qiankun
    Huang, Junjian
    NEURAL PROCESSING LETTERS, 2018, 48 (01) : 459 - 479
  • [6] Exponential Bipartite Synchronization of Fractional-Order Multilayer Signed Networks via Hybrid Impulsive Control
    Xu, Yao
    Lin, Teng
    Liu, Xinzhi
    Li, Wenxue
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (06) : 3926 - 3938
  • [7] Global Synchronization of Fractional-Order Multi-Delay Coupled Neural Networks with Multi-Link Complicated Structures via Hybrid Impulsive Control
    Fan, Hongguang
    Rao, Yue
    Shi, Kaibo
    Wen, Hui
    MATHEMATICS, 2023, 11 (14)
  • [8] Synchronization for a Class of Fractional-order Linear Complex Networks via Impulsive Control
    Na Liu
    Jie Fang
    Wei Deng
    Zhen-Jun Wu
    Guo-Qiang Ding
    International Journal of Control, Automation and Systems, 2018, 16 : 2839 - 2844
  • [9] Exponential synchronization of fractional-order complex networks via pinning impulsive control
    Fei Wang
    Yongqing Yang
    Aihua Hu
    Xianyun Xu
    Nonlinear Dynamics, 2015, 82 : 1979 - 1987
  • [10] Synchronization for a Class of Fractional-order Linear Complex Networks via Impulsive Control
    Liu, Na
    Fang, Jie
    Deng, Wei
    Wu, Zhen-Jun
    Ding, Guo-Qiang
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2018, 16 (06) : 2839 - 2844