A hybrid Newton's method for solving tensor square root problem

被引:0
|
作者
Liu, Lixia [1 ]
Gao, Yongjuan [1 ]
Duan, Xuefeng [2 ]
Wang, Chunfeng [3 ]
Liu, Sanyang [1 ]
机构
[1] Xidian Univ, Dept Math & Stat, Xian, Shaanxi, Peoples R China
[2] Guilin Univ Elect Technol, Coll Math & Computat Sci, Guilin, Guangxi, Peoples R China
[3] Xianyang Normal Univ, Sch Math & Stat, Xianyang, Shaanxi, Peoples R China
关键词
Newton's method; Tensor square root; Einstein product; Global convergence; Local quadratic convergence; 4TH-ORDER TENSORS; MATRIX; FACTORIZATION;
D O I
10.1007/s12190-024-02351-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Tensor equations have been widely studied in recent years. In this paper, we proposed a hybrid Newton's method to solve tensor square root problem X & lowast;X=A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {X}}*{\mathcal {X}}={\mathcal {A}}$$\end{document} via Einstein product. This algorithm makes use of tensor computations directly and combines the advantages of the Steepest descent method and the Newton's method, overcoming their disadvantages. The global convergence and the local quadratic convergence are obtained. Numerical results demonstrate that the hybrid Newton's method is competitive with the Newton's method in Duan (Appl Math Lett 98:57-62, 2019).
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Hybrid method for solving a layout problem
    Yalaoui, Naim
    Mahdi, Halim
    Amodeo, Lionel
    Yalaoui, Farouk
    COMPUTATIONAL INTELLIGENCE IN DECISION AND CONTROL, 2008, 1 : 731 - 736
  • [22] A Hybrid Computational Intelligence Method of Newton's Method and Genetic Algorithm for Solving Compatible Nonlinear Equations
    Wang, Yunfeng
    Wang, Haocheng
    Chen, Pengrui
    Zhang, Xue
    Ma, Guanning
    Yuan, Bintao
    Al Dmour, Ayman
    APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2022, 8 (01) : 1731 - 1742
  • [23] Newton's Method for M-Tensor Equations
    Li, Dong-Hui
    Xu, Jie-Feng
    Guan, Hong-Bo
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2021, 190 (02) : 628 - 649
  • [24] A regularization smoothing Newton method for solving nonlinear complementarity problem
    Chen, Xiaohong
    Ma, Changfeng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (03) : 1702 - 1711
  • [25] Newton’s Method for M-Tensor Equations
    Dong-Hui Li
    Jie-Feng Xu
    Hong-Bo Guan
    Journal of Optimization Theory and Applications, 2021, 190 : 628 - 649
  • [26] ON SOME MODIFICATIONS OF NEWTON METHOD FOR SOLVING THE NONLINEAR SPECTRAL PROBLEM
    KARTYSHOV, SV
    YUKHNO, LF
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1993, 33 (09) : 1239 - 1244
  • [27] Solving a boundary value problem by a Newton-like method
    Ezquerro, JA
    Hernández, MA
    Salanova, MA
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2002, 79 (10) : 1113 - 1120
  • [28] A hybrid Newton-GMRES method for solving nonlinear equations
    Bellavia, S
    Macconi, M
    Morini, B
    NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2001, 1988 : 68 - 75
  • [29] PSEUDOINVERSES IN GENERALIZING NEWTON'S METHOD FOR OBTAINING THE SQUARE ROOT OF A SYMMETRIC POSITIVE SEMIDEFINITE MATRIX.
    Walker, Douglas
    Hallum, Cecil
    Industrial Mathematics, 1984, 34 (pt 2): : 137 - 146
  • [30] Dynamics of Newton's method for solving some equations
    Jeong, M
    Kim, GO
    Kim, SA
    COMPUTERS & GRAPHICS-UK, 2002, 26 (02): : 271 - 279