A hybrid Newton's method for solving tensor square root problem

被引:0
|
作者
Liu, Lixia [1 ]
Gao, Yongjuan [1 ]
Duan, Xuefeng [2 ]
Wang, Chunfeng [3 ]
Liu, Sanyang [1 ]
机构
[1] Xidian Univ, Dept Math & Stat, Xian, Shaanxi, Peoples R China
[2] Guilin Univ Elect Technol, Coll Math & Computat Sci, Guilin, Guangxi, Peoples R China
[3] Xianyang Normal Univ, Sch Math & Stat, Xianyang, Shaanxi, Peoples R China
关键词
Newton's method; Tensor square root; Einstein product; Global convergence; Local quadratic convergence; 4TH-ORDER TENSORS; MATRIX; FACTORIZATION;
D O I
10.1007/s12190-024-02351-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Tensor equations have been widely studied in recent years. In this paper, we proposed a hybrid Newton's method to solve tensor square root problem X & lowast;X=A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {X}}*{\mathcal {X}}={\mathcal {A}}$$\end{document} via Einstein product. This algorithm makes use of tensor computations directly and combines the advantages of the Steepest descent method and the Newton's method, overcoming their disadvantages. The global convergence and the local quadratic convergence are obtained. Numerical results demonstrate that the hybrid Newton's method is competitive with the Newton's method in Duan (Appl Math Lett 98:57-62, 2019).
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Newton's method for solving the tensor square root problem
    Duan, Xue-Feng
    Wang, Cun-Yun
    Li, Chun-Mei
    APPLIED MATHEMATICS LETTERS, 2019, 98 : 57 - 62
  • [2] Newton's Method for the Matrix Nonsingular Square Root
    Li, Chun-Mei
    Shen, Shu-Qian
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [3] NEWTON METHOD FOR THE MATRIX SQUARE ROOT
    HIGHAM, NJ
    MATHEMATICS OF COMPUTATION, 1986, 46 (174) : 537 - 549
  • [4] TWO FIXED-POINT ITERATION ALGORITHMS FOR SOLVING TENSOR SQUARE ROOT PROBLEM
    Gao, Yongjuan
    Liu, Lixia
    Zhang, Zhechen
    Liu, Sanyang
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2025, 21 (03) : 2091 - 2106
  • [5] Newton's method with exact line search for the square root of a matrix
    Long, Jian-hui
    Hu, Xi-yan
    Zhang, Lei
    ISND 2007: PROCEEDINGS OF THE 2007 INTERNATIONAL SYMPOSIUM ON NONLINEAR DYNAMICS, PTS 1-4, 2008, 96
  • [6] The Newton method for solving a direct kinematic problem
    Goldin, SV
    Chernyakov, VG
    GEOLOGIYA I GEOFIZIKA, 1998, 39 (01): : 103 - 114
  • [7] HYBRID ALTERNATING EXTRA-GRADIENT AND NEWTON'S METHOD FOR TENSOR DECOMPOSITION
    Zhang, Junwei
    Yang, Yuning
    PACIFIC JOURNAL OF OPTIMIZATION, 2022, 18 (02): : 469 - 495
  • [8] A semismooth Newton method for tensor eigenvalue complementarity problem
    Zhongming Chen
    Liqun Qi
    Computational Optimization and Applications, 2016, 65 : 109 - 126
  • [9] A semismooth Newton method for tensor eigenvalue complementarity problem
    Chen, Zhongming
    Qi, Liqun
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 65 (01) : 109 - 126
  • [10] A SIMPLIFIED NEWTON'S METHOD TO CALCULATE THE SQUARE ROOT OF A POSITIVE DEFINITE REAL MATRIX
    Mendoza Mexia, Alfredo
    Gomez Aldama, Oscar Ruben
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2010, 26 (01): : 47 - 53