A Modified Preassigned Finite-Time Control Scheme for Spacecraft Large-Angle Attitude Maneuvering and Tracking

被引:0
|
作者
Ma, Xudong [1 ]
Liu, Yuan [1 ]
Cheng, Yi [2 ]
Zhao, Kun [2 ]
机构
[1] Sun Yat Sen Univ, Sch Aeronaut & Astronaut, Shenzhen 518107, Peoples R China
[2] Shanghai Inst Satellite Engn, Shanghai 201109, Peoples R China
基金
国家重点研发计划;
关键词
large-angle attitude maneuver; attitude tracking; angular velocity constraints; control torque constraints; RIGID SPACECRAFT; STABILIZATION; SYSTEMS;
D O I
10.3390/s25030986
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper addresses the problem of large-angle attitude maneuvering and tracking control for rigid spacecraft, considering angular velocity and torque constraints, actuator faults, and external disturbances. First, a sliding-mode-like vector is constructed to guarantee the satisfaction of the angular velocity constraints. A modified preassigned finite-time function, which can adaptively adjust the boundaries, is then proposed to constrain the sliding-mode-like vector. The controller is designed to stabilize the closed-loop system using a barrier Lyapunov function. Additionally, actuator saturation is compensated adaptively, and the system's lumped disturbance is estimated using a fixed-time disturbance observer. Finally, the practically preassigned finite-time stability of the closed-loop system is demonstrated. In practical applications, the proposed controller can guarantee transient and steady-state performance, prevent excessive angular velocity, and ensure compliance with the physical limitations of the actuators. Simulation results are provided to demonstrate the effectiveness of the proposed controller.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] adaptive backstepping finite-time attitude tracking control of spacecraft without unwinding
    Huang, Bing
    Li, Aijun
    Guo, Yong
    Wang, Changqing
    YuanZhang
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 1180 - 1185
  • [32] Adaptive backstepping finite-time sliding mode control of spacecraft attitude tracking
    Chutiphon Pukdeboon
    JournalofSystemsEngineeringandElectronics, 2015, 26 (04) : 826 - 839
  • [33] Global finite-time attitude consensus tracking control for a group of rigid spacecraft
    Li, Penghua
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2017, 48 (13) : 2703 - 2712
  • [34] Finite-time distributed cooperative attitude tracking control for multiple rigid spacecraft
    He, Xiaoyan
    Wang, Qingyun
    Yu, Wenwu
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 724 - 734
  • [35] Finite-time attitude tracking control for spacecraft without angular velocity measurements
    Yuan, Li
    Ma, Guangfu
    Li, Chuanjiang
    Jiang, Boyan
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2017, 28 (06) : 1174 - 1185
  • [36] Finite-Time Disturbance Observer Design and Attitude Tracking Control of a Rigid Spacecraft
    Lan, Qixun
    Qian, Chunjiang
    Li, Shihua
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2017, 139 (06):
  • [38] Robust Adaptive Finite-Time Prescribed Performance Attitude Tracking Control of Spacecraft
    Qijia Yao
    International Journal of Aeronautical and Space Sciences, 2021, 22 : 1183 - 1193
  • [39] Adaptive Finite-Time Control for Attitude Tracking of Spacecraft under Input Saturation
    Guo, Yong
    Huang, Bing
    Wang, Shuo
    Li, Ai-jun
    Wang, Chang-qing
    JOURNAL OF AEROSPACE ENGINEERING, 2018, 31 (02)
  • [40] FINITE-TIME ATTITUDE TRACKING CONTROL FOR SPACECRAFT WITHOUT ANGULAR VELOCITY MEASUREMENT
    Jiang, Boyan
    Li, Chuanjiang
    Guo, Yanning
    Dong, Hongyang
    SPACEFLIGHT MECHANICS 2017, PTS I - IV, 2017, 160 : 2591 - 2602