Siamese Adaptive Template Update Network for Visual Tracking

被引:0
|
作者
Wen, Jia [1 ,2 ]
Ren, Kejun [1 ,2 ]
Xiang, Yang [1 ,2 ]
Tang, Dandan [1 ,2 ]
机构
[1] Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Hebei, Peoples R China
[2] Key Lab Comp Virtual Technol & Syst Integrat Hebe, Shijiazhuang, Hebei, Peoples R China
来源
ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT II | 2023年 / 14087卷
基金
中国国家自然科学基金;
关键词
Feature enhancement; Template update; Siamese network; Single-target tracking;
D O I
10.1007/978-981-99-4742-3_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Siamese-based trackers have achieved strong performance in single-target tracking. Effective feature response maps are fundamental to improving tracker performance when dealing with challenging scenes. However, most Siamese-based trackers have constant template features when tracking. This approach greatly limits the effectiveness of the tracker in complex scenes. To solve this issue, we proposed a novel tracking framework, termed as SiamATU, which adaptively performs update of template features. This update method uses a multi-stage training strategy during the training process so that the template update is gradually optimized. In addition, we designed a feature enhancement module to enhance the discriminative and robustness of the features, which focuses on the rich correlation between the template image and the search image, and then makes the model more focused on the tracking object to achieve more precise tracking. Through extensive experiments on GOT-10K, UAV123, OTB100, and other datasets, SiamATU has a leading performance, which runs at 26.23FPS, exceeding the real-time level of 25FPS.
引用
收藏
页码:485 / 497
页数:13
相关论文
共 50 条
  • [31] Manipulating Template Pixels for Model Adaptation of Siamese Visual Tracking
    Li, Zhenbang
    Li, Bing
    Gao, Jin
    Li, Liang
    Hu, Weiming
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1690 - 1694
  • [32] IoU-guided Siamese network with high-confidence template fusion for visual tracking
    Liu, Zhigang
    Huang, Hao
    Dong, Hongyu
    Xing, Fuyuan
    NEUROCOMPUTING, 2025, 614
  • [33] Combining Siamese Network and Regression Network for Visual Tracking
    Ge, Yao
    Chen, Rui
    Tong, Ying
    Cao, Xuehong
    Liang, Ruiyu
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2020, E103D (08) : 1924 - 1927
  • [34] Visual Object Tracking for Unmanned Aerial Vehicles Based on the Template-Driven Siamese Network
    Sun, Lifan
    Yang, Zhe
    Zhang, Jinjin
    Fu, Zhumu
    He, Zishu
    REMOTE SENSING, 2022, 14 (07)
  • [35] Siamese tracking combing frequency channel attention with adaptive template
    Pang, Haibo
    Xie, Meiqin
    Liu, Chengming
    Ma, Rongqi
    Han, Linxuan
    IET COMMUNICATIONS, 2021, 15 (20) : 2493 - 2502
  • [36] Adaptive Image Dehazing and Object Tracking in UAV Videos Based on the Template Updating Siamese Network
    Sun, Lifan
    Chang, Jiashun
    Zhang, Jinjin
    Fan, Bo
    He, Zishu
    IEEE SENSORS JOURNAL, 2023, 23 (11) : 12320 - 12333
  • [37] Siamese residual network for efficient visual tracking
    Fan, Nana
    Liu, Qiao
    Li, Xin
    Zhou, Zikun
    He, Zhenyu
    INFORMATION SCIENCES, 2023, 624 : 606 - 623
  • [38] Siamese Feedback Network for Visual Object Tracking
    Gwon M.-G.
    Kim J.
    Um G.-M.
    Lee H.
    Seo J.
    Lim S.Y.
    Yang S.-J.
    Kim W.
    IEIE Transactions on Smart Processing and Computing, 2022, 11 (01): : 24 - 33
  • [39] FLOW GUIDED SIAMESE NETWORK FOR VISUAL TRACKING
    Wang, Guokun
    Liu, Bin
    Li, Weihai
    Yu, Nenghai
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 231 - 235
  • [40] Siamese Guided Anchoring Network for Visual Tracking
    Zhou, Yifei
    Li, Jing
    Chang, Jun
    Xiao, Yafu
    Wan, Jun
    Sun, Hang
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,