Residual Attention-Based Image Fusion Method with Multi-Level Feature Encoding
被引:0
|
作者:
Li, Hao
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
Li, Hao
[1
,2
]
Yang, Tiantian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chinese Acad Sci, Beijing 100049, Peoples R China
Chinese Acad Sci, Technol & Engn Ctr Space Utilizat, Beijing 100094, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
Yang, Tiantian
[2
,3
]
Wang, Runxiang
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Univ, Sch Future Technol, Tianjin 300072, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
Wang, Runxiang
[4
]
Li, Cuichun
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
Li, Cuichun
[1
]
Zhou, Shuyu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
Zhou, Shuyu
[1
]
Guo, Xiqing
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaChinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
Guo, Xiqing
[1
,2
]
机构:
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Technol & Engn Ctr Space Utilizat, Beijing 100094, Peoples R China
[4] Tianjin Univ, Sch Future Technol, Tianjin 300072, Peoples R China
This paper presents a novel image fusion method designed to enhance the integration of infrared and visible images through the use of a residual attention mechanism. The primary objective is to generate a fused image that effectively combines the thermal radiation information from infrared images with the detailed texture and background information from visible images. To achieve this, we propose a multi-level feature extraction and fusion framework that encodes both shallow and deep image features. In this framework, deep features are utilized as queries, while shallow features function as keys and values within a residual cross-attention module. This architecture enables a more refined fusion process by selectively attending to and integrating relevant information from different feature levels. Additionally, we introduce a dynamic feature preservation loss function to optimize the fusion process, ensuring the retention of critical details from both source images. Experimental results demonstrate that the proposed method outperforms existing fusion techniques across various quantitative metrics and delivers superior visual quality.
机构:
Department of Data Science and Technology, Heilongjiang University, Harbin,150080, ChinaDepartment of Data Science and Technology, Heilongjiang University, Harbin,150080, China
Zhu, Ge
Wei, Zizun
论文数: 0引用数: 0
h-index: 0
机构:
Department of Data Science and Technology, Heilongjiang University, Harbin,150080, ChinaDepartment of Data Science and Technology, Heilongjiang University, Harbin,150080, China
Wei, Zizun
Lin, Feng
论文数: 0引用数: 0
h-index: 0
机构:
Department of Information and Network Administration Center, Heilongjiang University, Harbin,150080, ChinaDepartment of Data Science and Technology, Heilongjiang University, Harbin,150080, China
机构:
School of Computer Science and Technology, Guangdong University of Technology, Guangzhou,510006, ChinaSchool of Computer Science and Technology, Guangdong University of Technology, Guangzhou,510006, China
Yao, Zhuangze
Zeng, Bi
论文数: 0引用数: 0
h-index: 0
机构:
School of Computer Science and Technology, Guangdong University of Technology, Guangzhou,510006, ChinaSchool of Computer Science and Technology, Guangdong University of Technology, Guangzhou,510006, China
Zeng, Bi
Lin, Zhentao
论文数: 0引用数: 0
h-index: 0
机构:
School of Computer Science and Technology, Guangdong University of Technology, Guangzhou,510006, ChinaSchool of Computer Science and Technology, Guangdong University of Technology, Guangzhou,510006, China
Lin, Zhentao
Jiang, Chunling
论文数: 0引用数: 0
h-index: 0
机构:
School of Computer Science and Technology, Guangdong University of Technology, Guangzhou,510006, ChinaSchool of Computer Science and Technology, Guangdong University of Technology, Guangzhou,510006, China
Jiang, Chunling
Deng, Bin
论文数: 0引用数: 0
h-index: 0
机构:
School of Computer Science and Technology, Guangdong University of Technology, Guangzhou,510006, ChinaSchool of Computer Science and Technology, Guangdong University of Technology, Guangzhou,510006, China
机构:
Minjiang Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R ChinaMinjiang Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
Ruan, Zhiqiang
Wan, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Minjiang Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R ChinaMinjiang Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
Wan, Jie
Xiao, Guobao
论文数: 0引用数: 0
h-index: 0
机构:
Tongji Univ, Sch Elect & Informat Engn, Shanghai 200092, Peoples R ChinaMinjiang Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
Xiao, Guobao
Tang, Zhimin
论文数: 0引用数: 0
h-index: 0
机构:
Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R ChinaMinjiang Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
Tang, Zhimin
Ma, Jiayi
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Elect Informat Sch, Wuhan 430072, Peoples R ChinaMinjiang Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
机构:
Peng Cheng Lab, Shenzhen, Peoples R ChinaPeng Cheng Lab, Shenzhen, Peoples R China
Song, Weiwei
Gao, Zhi
论文数: 0引用数: 0
h-index: 0
机构:
Peng Cheng Lab, Shenzhen, Peoples R China
Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan, Peoples R ChinaPeng Cheng Lab, Shenzhen, Peoples R China
Gao, Zhi
Fang, Leyuan
论文数: 0引用数: 0
h-index: 0
机构:
Peng Cheng Lab, Shenzhen, Peoples R China
Hunan Univ, Coll Elect & Informat Engn, Changsha, Peoples R ChinaPeng Cheng Lab, Shenzhen, Peoples R China
Fang, Leyuan
Zhang, Yongjun
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan, Peoples R ChinaPeng Cheng Lab, Shenzhen, Peoples R China
Zhang, Yongjun
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM,
2023,
: 5978
-
5981