Residual Attention-Based Image Fusion Method with Multi-Level Feature Encoding

被引:0
|
作者
Li, Hao [1 ,2 ]
Yang, Tiantian [2 ,3 ]
Wang, Runxiang [4 ]
Li, Cuichun [1 ]
Zhou, Shuyu [1 ]
Guo, Xiqing [1 ,2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Technol & Engn Ctr Space Utilizat, Beijing 100094, Peoples R China
[4] Tianjin Univ, Sch Future Technol, Tianjin 300072, Peoples R China
关键词
image fusion; transformer; cross attention; deep learning; feature encoding; MULTISCALE TRANSFORM; NETWORK; FRAMEWORK; WAVELET;
D O I
10.3390/s25030717
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper presents a novel image fusion method designed to enhance the integration of infrared and visible images through the use of a residual attention mechanism. The primary objective is to generate a fused image that effectively combines the thermal radiation information from infrared images with the detailed texture and background information from visible images. To achieve this, we propose a multi-level feature extraction and fusion framework that encodes both shallow and deep image features. In this framework, deep features are utilized as queries, while shallow features function as keys and values within a residual cross-attention module. This architecture enables a more refined fusion process by selectively attending to and integrating relevant information from different feature levels. Additionally, we introduce a dynamic feature preservation loss function to optimize the fusion process, ensuring the retention of critical details from both source images. Experimental results demonstrate that the proposed method outperforms existing fusion techniques across various quantitative metrics and delivers superior visual quality.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] An Object Detection Method Combining Multi-Level Feature Fusion and Region Channel Attention
    Zhu, Ge
    Wei, Zizun
    Lin, Feng
    IEEE Access, 2021, 9 : 25101 - 25109
  • [22] Adaptive multi-level feature fusion and attention-based network for arbitrary-oriented object detection in remote sensing imagery
    Chen, Luchang
    Liu, Chunsheng
    Chang, Faliang
    Li, Shuang
    Nie, Zhaoying
    NEUROCOMPUTING, 2021, 451 : 67 - 80
  • [23] Multi-level Feature Attention Network for medical image segmentation
    Zhang, Yaning
    Yin, Jianjian
    Gu, Yanhui
    Chen, Yi
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 263
  • [24] Image fusion using a multi-level image decomposition and fusion method
    Tian, Yu
    Yang, Wenjing
    Wang, Ji
    APPLIED OPTICS, 2021, 60 (24) : 7466 - 7479
  • [25] AMFF: A new attention-based multi-feature fusion method for intention recognition
    Liu, Cong
    Xu, Xiaolong
    KNOWLEDGE-BASED SYSTEMS, 2021, 233
  • [26] Infrared and Visible Image Fusion via Attention-Based Adaptive Feature Fusion
    Wang, Lei
    Hu, Ziming
    Kong, Quan
    Qi, Qian
    Liao, Qing
    ENTROPY, 2023, 25 (03)
  • [27] An Interactive Image Segmentation Method Based on Multi-Level Semantic Fusion
    Zou, Ruirui
    Wang, Qinghui
    Wen, Falin
    Chen, Yang
    Liu, Jiale
    Du, Shaoyi
    Yuan, Chengzhi
    SENSORS, 2023, 23 (14)
  • [28] Tracking Algorithm Combining Multi-Level Feature Fusion and Efficient Attention
    Yao, Zhuangze
    Zeng, Bi
    Lin, Zhentao
    Jiang, Chunling
    Deng, Bin
    Computer Engineering and Applications, 2023, 59 (16) : 177 - 186
  • [29] Semantic attention-based heterogeneous feature aggregation network for image fusion
    Ruan, Zhiqiang
    Wan, Jie
    Xiao, Guobao
    Tang, Zhimin
    Ma, Jiayi
    PATTERN RECOGNITION, 2024, 155
  • [30] A NEW MULTI-LEVEL ATTENTION FEATURE FUSION METHOD FOR HYPERSPECTRAL AND LIDAR DATA JOINT CLASSIFICATION
    Song, Weiwei
    Gao, Zhi
    Fang, Leyuan
    Zhang, Yongjun
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5978 - 5981