Fluorocarbon interlayer enhancing fast ion transport for low-temperature lithium metal batteries

被引:0
|
作者
Yang, Zhen [1 ]
Wang, Changding [3 ]
Wang, Zhongsheng [1 ]
He, Siru [4 ,5 ]
You, Tiancheng [1 ]
Wang, An [1 ]
Jin, Youliang [1 ]
Mei, Lin [1 ]
Huang, Shaozhen [1 ]
Chen, Yuejiao [1 ]
Chen, Libao [1 ,2 ]
机构
[1] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
[2] Cent South Univ, Natl Energy Met Resources & New Mat Key Lab, Changsha 410083, Peoples R China
[3] Chongqing Univ, Natl Innovat Ctr Ind Educ Integrat Energy Storage, Sch Elect Engn, State Key Lab Power Transmiss Equipment Technol, Chongqing 400044, Peoples R China
[4] Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[5] SUSTech Energy Inst Carbon Neutral, Shenzhen 518055, Peoples R China
基金
中国国家自然科学基金;
关键词
Dry friction; Fluorocarbon interlayer; Modified interlayer; Lithium metal anode; Low temperature; ELECTROLYTES; ANODE;
D O I
10.1016/j.jcis.2025.02.199
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium metal batteries optimized for low-temperature conditions are essential for use in cold climate applications. Nevertheless, they are hindered by the markedly reduced kinetics of lithium-ion transport in the vicinity of the lithium metal anode under low-temperature conditions. In contrast to the commonly used electrolyte engineering approaches, this study introduces a design strategy of using a functional fluorocarbon interlayer to reconstruct the surface of the lithium foil (Li@GF), aiming to effectively enhance the electrochemical reaction kinetics of the lithium metal anode at low temperatures. Extensive experimental and theoretical investigations demonstrate that the fluorocarbon interlayer exhibits improved lithiophilicity and provides multiple ionic conductive pathways, thereby promoting uniform and rapid lithium ion transport at the interface. The Li (Ni0.8Co0.1Mn0.1)O2 (NCM811)||Li@GF full cells exhibit a commercial-grade capacity of 84.34 mAh g-1 and maintain an impressive capacity retention of 93.3 % after 300 cycles at-40 degrees C. The strategic design of a functional interphase aimed at improving ion transfer kinetics offers new perspectives for the advancement of lithium metal batteries characterized by high areal capacity and prolonged longevity under low-temperature conditions.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Interfacial kinetics induced phase separation enhancing low-temperature performance of lithium-ion batteries
    Li, Kaikai
    Lin, Dongmei
    Huang, He
    Liu, Dongqing
    Li, Baohua
    Shi, San-Qiang
    Kang, Feiyu
    Zhang, Tong-Yi
    Zhou, Limin
    NANO ENERGY, 2020, 75
  • [22] Low-Temperature-Sensitivity Materials for Low-Temperature Lithium-Ion Batteries
    Ge, Yuchong
    Chen, Jiahe
    Ma, Guozheng
    Huang, Rongtao
    Meng, Fanbo
    Hu, Renzong
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (09) : 13232 - 13245
  • [23] Review on Low-Temperature Electrolytes for Lithium-Ion and Lithium Metal Batteries (vol 6, 35, 2023)
    Tan, Sha
    Shadike, Zulipiya
    Cai, Xinyin
    Lin, Ruoqian
    Kludze, Atsu
    Borodin, Oleg
    Lucht, Brett L.
    Wang, Chunsheng
    Hu, Enyuan
    Xu, Kang
    Yang, Xiao-Qing
    ELECTROCHEMICAL ENERGY REVIEWS, 2024, 7 (01)
  • [24] Low-Temperature and Fast-Charge Sodium Metal Batteries
    Yu, Dandan
    Wang, Zhenya
    Yang, Jiacheng
    Wang, Yingyu
    Li, Yuting
    Zhu, Qiaonan
    Tu, Xinman
    Chen, Dezhi
    Liang, Junfei
    Khalilov, Umedjon
    Wang, Hua
    SMALL, 2024, 20 (30)
  • [25] Reversible lithium plating on working anodes enhances fast charging capability in low-temperature lithium-ion batteries
    Tian, Yu
    Lin, Cheng
    Chen, Xiang
    Yu, Xiao
    Xiong, Rui
    Zhang, Qiang
    ENERGY STORAGE MATERIALS, 2023, 56 : 412 - 423
  • [26] Design of a fast ion-transport interlayer on cathode-electrolyte interface for solid-state lithium metal batteries
    Guo, Qingpeng
    Zheng, Jiayi
    Zhu, Yuhao
    Jiang, Haolong
    Jiang, Huize
    Wang, Hui
    Sun, Weiwei
    Sang, Hongqian
    Han, Yu
    Zheng, Chunman
    Xie, Kai
    ENERGY STORAGE MATERIALS, 2022, 48 : 205 - 211
  • [27] Materials insights into low-temperature performances of lithium-ion batteries
    Zhu, Gaolong
    Wen, Kechun
    Lv, Weiqiang
    Zhou, Xingzhi
    Liang, Yachun
    Yang, Fei
    Chen, Zhilin
    Zou, Minda
    Li, Jinchao
    Zhang, Yuqian
    He, Weidong
    JOURNAL OF POWER SOURCES, 2015, 300 : 29 - 40
  • [28] A Review on Low-Temperature Performance Management of Lithium-Ion Batteries
    Zhan, Jincheng
    Deng, Yifei
    Gao, Yaohui
    Ren, Jiaoyi
    Liu, Yuang
    Rao, Shun
    Li, Weifeng
    Gao, Zhenhai
    Chen, Yupeng
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2024, 21 (03)
  • [29] Liquid electrolyte development for low-temperature lithium-ion batteries
    Hubble, Dion
    Brown, David Emory
    Zhao, Yangzhi
    Fang, Chen
    Lau, Jonathan
    McCloskey, Bryan D.
    Liu, Gao
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (02) : 550 - 578
  • [30] Low-Temperature Behavior of Alloy Anodes for Lithium-Ion Batteries
    Cavallaro, Kelsey A.
    Sandoval, Stephanie Elizabeth
    Yoon, Sun Geun
    Thenuwara, Akila C.
    McDowell, Matthew T.
    ADVANCED ENERGY MATERIALS, 2022, 12 (43)