A Multi-Degree-of-Freedom Piezoelectric Kinetic Energy Harvester for Self-Powered Wireless Sensors in Electric Buses

被引:0
|
作者
Fan, Duxing [1 ]
Zhao, Zhen [1 ]
Zhang, Baifu [2 ]
Cui, Haichuan [3 ]
Zhang, Xiaohui [1 ]
Wan, Deshuo [1 ]
机构
[1] Liaocheng Univ, Sch Mech & Automobile Engn, Liaocheng 252059, Peoples R China
[2] Taiyuan Univ Technol, Coll Elect & Power Engn, Taiyuan 030024, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
关键词
multi-degree-of-freedom energy harvesters; pareto analysis; piezoelectric power generation; self-powered wireless sensors; TRIBOELECTRIC NANOGENERATOR; VEHICLE; FREQUENCY; SYSTEM; WIND; DESIGN;
D O I
10.1002/ente.202402440
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Harvesting energy from the surrounding environment represents a viable method for developing self-powered systems and realizing that vehicles' low-power sensors are self-powered. Nevertheless, existing energy harvesting devices exhibit limitations in their capacity to capture kinetic energy across a broad spectrum of motion. To overcome this limitation, a multi-degree-of-freedom piezoelectric energy harvester has been developed, comprising three modules: motion conversion, energy transformation, and power storage. The motion conversion module utilizes a connecting rod and sliding bearing mechanism to transform complex three-dimensional motions of swing body into simplified two-dimensional movements of sliding mass. The energy transformation module utilizes piezoelectric elements to convert mechanical energy into electrical energy, which is then rectified and stored in capacitors by the power storage module. Experimental results demonstrate the system's capability to generate a maximum average output power of 758 mu W. Capacitor charging tests show that 100, 330, and 470 mu F capacitors can be charged to 1 V in 20, 32, and 50 s, respectively. Real-world vehicle tests confirm the practical applicability of this harvester, providing valuable insights for developing self-powered wireless sensor systems.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Flexible and multi-directional piezoelectric energy harvester for self-powered human motion sensor
    Kim, Min-Ook
    Pyo, Soonjae
    Oh, Yongkeun
    Kang, Yunsung
    Cho, Kyung-Ho
    Choi, Jungwook
    Kim, Jongbaeg
    SMART MATERIALS AND STRUCTURES, 2018, 27 (03)
  • [22] Self-Powered Wireless Thermal Energy Meter Based on Piezoelectric Energy Harvester for Thermal Energy Measurement in a Residential Area
    Asadi, Mehrdad
    Sarabadani, Hossein
    Qaderi-Baban, Payam
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2023, 26 (08) : 26 - 33
  • [23] Self-powered Wireless Temperature Sensor with Piezoelectric Energy Harvester Fabricated with metal-MEMS Process
    Chen, J. J.
    Lien, Y. C.
    Kuo, C. L.
    Wu, W. J.
    2015 IEEE 10TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS), 2015, : 619 - 622
  • [24] Energy harvesting using piezoelectric igniter for self-powered radio frequency (RF) wireless sensors
    Tan, Y. K.
    Hoe, K. Y.
    Panda, S. K.
    2006 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS 1-6, 2006, : 2235 - +
  • [25] Integration of Energy Harvester for Self-Powered Wireless Sensor Network Nodes
    Chen, Lijuan
    Xu, Xiaohui
    Zeng, Pingliang
    Ma, Jianqiang
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2014,
  • [26] Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester
    Aranda, Jesus Javier
    Bader, Sebastian
    Oelmann, Bengt
    SENSORS, 2021, 21 (04) : 1 - 18
  • [27] Variable damping energy regenerative damper for self-powered sensors and self-sensing devices in smart electric buses
    Abdelrahman, Mansour
    Fan, Chengliang
    Yi, Minyi
    Zhang, Zutao
    Ali, Asif
    Xia, Xiaofeng
    Mohamed, A. A.
    Mugheri, Shoukat Ali
    Ahmed, Ammar
    SMART MATERIALS AND STRUCTURES, 2024, 33 (10)
  • [28] A multi-degree-of-freedom triboelectric energy harvester for dual-frequency vibration energy harvesting
    Liu, Zicheng
    Zhao, Chaoyang
    Hu, Guobiao
    Yang, Yaowen
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 188
  • [29] Development of a pavement block piezoelectric energy harvester for self-powered walkway applications
    Song, Gyeong Ju
    Cho, Jae Yong
    Kim, Kyung-Bum
    Ahn, Jung Hwan
    Song, Yewon
    Hwang, Wonseop
    Hong, Seong Do
    Sung, Tae Hyun
    APPLIED ENERGY, 2019, 256
  • [30] Nanofibers-Based Piezoelectric Energy Harvester for Self-Powered Wearable Technologies
    Mokhtari, Fatemeh
    Shamshirsaz, Mahnaz
    Latifi, Masoud
    Foroughi, Javad
    POLYMERS, 2020, 12 (11) : 1 - 15