Estimation of Turbulent Mixing Factor and Study of Turbulent Flow Structures in Pressurized Water Reactor Sub Channel by Direct Numerical Simulation

被引:0
|
作者
Singh, R. K. [1 ,2 ]
Mukhopadhyay, Deb [1 ]
Khakhar, D. [3 ]
Joshi, J. B. [2 ]
机构
[1] Bhabha Atom Res Ctr, Mumbai 400085, India
[2] Homi Bhabha Natl Inst, Mumbai 400094, India
[3] Indian Inst Technol, Mumbai 400076, India
关键词
sub channel analysis; turbulent mixing factor; DNS; reactor thermal hydraulics; turbulent structures; PWR fuel channel; LARGE-EDDY SIMULATION; HEAT-TRANSFER; PART; LES;
D O I
10.1115/1.4066001
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Subchannel analysis codes are presently a requirement for design and safety analysis of nuclear reactors. Among the crucial inputs for these codes, the turbulent mixing factor holds particular significance. However, acquiring this factor through experimental means proves to be a challenging endeavor, primarily due to the necessity for precise pressure equilibrium between subchannels. Consequently, this requirement leads to the undertaking of expensive and intricate experiments for each new reactor or in cases where there are modifications in fuel bundle design. The need for direct numerical simulation (DNS) stems from the challenges and costs involved in experimental techniques, and the uncertainties due to empiricism in computational fluid dynamics (CFD) models. In this study, DNS has been conducted across six Reynolds numbers, ranging from 17,640 to 1.176 x 10(5), in the geometry of a pressurized water reactor (PWR) subchannel. The resulting turbulent flow structures have been computed and their dynamics are examined. Furthermore, this paper presents a methodology for directly calculating the turbulent mixing factor from the fluctuating velocity field obtained from DNS data. The turbulent mixing process has been scrutinized in-depth, and a correlation for the turbulent mixing factor is developed. It is noted that most of the mixing occurs in the near-wall region. The study suggests different mixing factors for mass and momentum mixing. This paper aims to provide a comprehensive insight into the turbulent mixing phenomenon.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Direct numerical simulation of a wall source dispersion in a turbulent channel flow
    Noormohammadi, Asghar
    Barron, Ronald
    Balachandar, Ram
    PHYSICS OF FLUIDS, 2024, 36 (03)
  • [32] Direct numerical simulation of a reacting turbulent channel flow with thermochemical ablation
    Cabrit, Olivier
    Nicoud, Franck
    JOURNAL OF TURBULENCE, 2010, 11 (44): : 1 - 33
  • [33] Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200
    Lee, Myoungkyu
    Moser, Robert D.
    JOURNAL OF FLUID MECHANICS, 2015, 774 : 395 - 415
  • [34] Direct numerical simulation of turbulent channel flow with wall velocity disturbances
    Orlandi, P
    Leonardi, S
    Tuzi, R
    Antonia, RA
    PHYSICS OF FLUIDS, 2003, 15 (12) : 3587 - 3601
  • [35] DIRECT NUMERICAL-SIMULATION OF PARTICLE ENTRAINMENT IN TURBULENT CHANNEL FLOW
    SOLTANI, M
    AHMADI, G
    PHYSICS OF FLUIDS, 1995, 7 (03) : 647 - 657
  • [36] Direct numerical simulation of turbulent channel flow over porous walls
    Rosti, Marco E.
    Cortelezzi, Luca
    Quadrio, Maurizio
    JOURNAL OF FLUID MECHANICS, 2015, 784 : 396 - 442
  • [37] Direct Numerical Simulation of Microbubble Dispersion in Vertical Turbulent Channel Flow
    Molin, Dafne
    Giusti, Andrea
    Soldati, Alfredo
    PROGRESS IN TURBULENCE III, 2010, 131 : 239 - 242
  • [38] Direct numerical simulation of the scouring of a brittle streambed in a turbulent channel flow
    Dalla Barba, Federico
    Picano, Francesco
    ACTA MECHANICA, 2021, 232 (12) : 4705 - 4728
  • [39] Direct Numerical Simulation of Sediment Transport in Turbulent Open Channel Flow
    Chan-Braun, Clemens
    Garcia-Villalba, Manuel
    Uhlmann, Markus
    HIGH PERFORMANCE COMPUTING IN SCIENCE AND ENGINEERING '10, 2011, : 295 - 306
  • [40] Direct numerical simulation of turbulent channel flow up to Reτ=590
    Moser, RD
    Kim, J
    Mansour, NN
    PHYSICS OF FLUIDS, 1999, 11 (04) : 943 - 945