AMARO: All Heavy-Atom Transferable Neural Network Potentials of Protein Thermodynamics

被引:2
|
作者
Mirarchi, Antonio [1 ]
Pelaez, Raul P. [1 ]
Simeon, Guillem [1 ]
De Fabritiis, Gianni [1 ,2 ,3 ]
机构
[1] Univ Pompeu Fabra, Computat Sci Lab, Barcelona 08003, Spain
[2] Acellera Labs, Barcelona 08005, Spain
[3] Inst Catalana Recerca & Estudis Avancats ICREA, Barcelona 08010, Spain
基金
美国国家卫生研究院;
关键词
MOLECULAR-DYNAMICS SIMULATIONS; COARSE-GRAINED MODEL; MARKOV STATE MODELS; FORCE-FIELD; KINETICS;
D O I
10.1021/acs.jctc.4c01239
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
All-atom molecular simulations offer detailed insights into macromolecular phenomena, but their substantial computational cost hinders the exploration of complex biological processes. We introduce Advanced Machine-learning Atomic Representation Omni-force-field (AMARO), a new neural network potential (NNP) that combines an O(3)-equivariant message-passing neural network architecture, TensorNet, with a coarse-graining map that excludes hydrogen atoms. AMARO demonstrates the feasibility of training coarser NNP, without prior energy terms, to run stable protein dynamics with scalability and generalization capabilities.
引用
收藏
页码:9871 / 9878
页数:8
相关论文
共 50 条
  • [41] Embedded Atom Neural Network Potentials: Efficient and Accurate Machine Learning with a Physically Inspired Representation
    Zhang, Yaolong
    Hu, Ce
    Jiang, Bin
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2019, 10 (17): : 4962 - 4967
  • [42] De novo protein structure determination by heavy-atom soaking in lipidic cubic phase and SIKHS phasing using serial synchrotron crystallography
    Botha, S.
    Baitan, D.
    Jungnickel, K. E. J.
    Oberthuer, D.
    Schmidt, C.
    Stern, S.
    Wiedorn, M. O.
    Perbandt, M.
    Chapman, H. N.
    Betzel, C.
    IUCRJ, 2018, 5 : 524 - 530
  • [43] CRYSTAL-GROWTH OF THE MEMBRANE-PROTEIN BACTERIORHODOPSIN - HEAVY-ATOM LABELING, AND LIQUID-LIQUID-DIFFUSION PROFILES IN MICROGRAVITY EXPERIMENTS
    WAGNER, G
    LINHARDT, R
    PROCEEDINGS OF THE VIITH EUROPEAN SYMPOSIUM ON MATERIALS AND FLUID SCIENCES IN MICROGRAVITY, 1989, 295 : 35 - 39
  • [44] Pair-distribution-function guided optimization of fingerprints for atom-centered neural network potentials
    Li, Lei
    Li, Hao
    Seymour, Ieuan D.
    Koziol, Lucas
    Henkelman, Graeme
    JOURNAL OF CHEMICAL PHYSICS, 2020, 152 (22): : 224102
  • [45] Construction of high-dimensional neural network potentials using environment-dependent atom pairs
    Jose, K. V. Jovan
    Artrith, Nongnuch
    Behler, Joerg
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (19):
  • [46] MULTIPLE HEAVY-ATOM SITES IN PROTEIN CRYSTALS HAVING CENTROSYMMETRIC PROJECTIONS - INTERPRETATION OF VECTOR MAPS .2. CORRELATION OF SITES IN DIFFERENT ADDUCTS
    BUNN, CW
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL CRYSTALLOGRAPHY AND CRYSTAL CHEMISTRY, 1971, B 27 (SEP15): : 1783 - &
  • [48] Thermodynamics of an all-atom off-lattice model of the fragment B of Staphylococcal protein A:: Implication for the origin of the cooperativity of protein folding
    Zhou, YQ
    Linhananta, A
    JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (06): : 1481 - 1485
  • [49] Enhancing Protein-Ligand Binding Affinity Predictions Using Neural Network Potentials
    Zariquiey, Francesc Sabanes
    Galvelis, Raimondas
    Gallicchio, Emilio
    Chodera, John D.
    Markland, Thomas E.
    De Fabritiis, Gianni
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (05) : 1481 - 1485
  • [50] Automatic Feature Selection for Atom-Centered Neural Network Potentials Using a Gradient Boosting Decision Algorithm
    Li, Renzhe
    Wang, Jiaqi
    Singh, Akksay
    Li, Bai
    Song, Zichen
    Zhou, Chuan
    Li, Lei
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (23) : 10564 - 10573