A novel 2.1 GPa martensitic stainless steel manufactured by laser powder bed fusion and post treatment

被引:0
|
作者
Wang, Qipeng [1 ]
Liang, Yuzheng [1 ]
Chen, Xinsheng [1 ]
Yang, Ziwei [1 ]
Dong, Kewei [1 ]
Peng, Yong [1 ]
Zhou, Qi [1 ]
Wang, Kehong [1 ]
Kong, Jian [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Martensitic stainless steel; Laser powder bed fusion; Microstructure; Mechanical properties; HIGH-STRENGTH; HEAT-TREATMENT; MICROSTRUCTURE; DUCTILITY;
D O I
10.1016/j.jmrt.2025.03.241
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ultra-high strength martensitic stainless steel prepared by traditional methods often has to go through forging or rolling process. In the work, A novel 20Cr13Co12Mo4Ni2 martensitic stainless steel was developed and manufactured by laser powder bed fusion (LPBF) and cryogenic + heat treatment. The ultimate tensile strength of martensitic stainless steel is 2121 MPa, and the elongation of fracture is 9.2 %. Due to cryogenic + heat treatment converts a large amount of austenite to martensite, and the high density dislocation generated by the rapid heating and cooling process of LPBF is retained, the sample has a dislocation density of 1.85 x 1016 m-2, which is comparable to forging and rolling. The high dislocation density can promote the nucleation of the second phase and make the precipitated phase small and dispersed, therefore, there are a large number of nanoscale rod-like (Fe,Cr)2Mo laves phase and M2C carbide precipitated in the heat-treated specimens. In addition, the cellular heterostructure formed by LPBF process can improve the ductility. Through theoretical calculation, the second phase strengthening is the main strengthening mechanism. The steels in this work have significant advantages in mechanical properties, and the trade-off between strength and ductility is well avoided.
引用
收藏
页码:1930 / 1937
页数:8
相关论文
共 50 条
  • [21] Gas Atomization of Duplex Stainless Steel Powder for Laser Powder Bed Fusion
    Cui, Chengsong
    Stern, Felix
    Ellendt, Nils
    Uhlenwinkel, Volker
    Steinbacher, Matthias
    Tenkamp, Jochen
    Walther, Frank
    Fechte-Heinen, Rainer
    MATERIALS, 2023, 16 (01)
  • [22] Influence of the surface state on the corrosion behavior of the 316 L stainless steel manufactured by laser powder bed fusion
    Bedmar, J.
    Abu-warda, N.
    Garcia-Rodriguez, S.
    Torres, B.
    Rams, J.
    CORROSION SCIENCE, 2022, 207
  • [23] Microstructure and mechanical properties of a modified 316 austenitic stainless steel alloy manufactured by laser powder bed fusion
    Svahn, F.
    Mishra, P.
    Edin, E.
    Akerfeldt, P.
    Antti, M. -l.
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 28 : 1452 - 1462
  • [24] Tailoring the microstructural and mechanical properties of 316L stainless steel manufactured by laser powder bed fusion
    Liu, Wei
    Liu, Cheng-song
    Wang, Yong
    Zhang, Hua
    Li, Lie
    Lu, Yuan-yuan
    Xiong, Li
    Ni, Hong-wei
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2023, 25 : 7389 - 7405
  • [25] Tribological behavior and biocompatibility of novel Nickel-Free stainless steel manufactured via laser powder bed fusion for biomedical applications
    Nayak, Chinmayee
    Anand, Abhinav
    Kamboj, Nikhil
    Kantonen, Tuomas
    Kajander, Karoliina
    Tupala, Vilma
    Heino, Terhi J.
    Cherukuri, Rahul
    Mohanty, Gaurav
    Capek, Jan
    Polatidis, Efthymios
    Goel, Sneha
    Salminen, Antti
    Ganvir, Ashish
    MATERIALS & DESIGN, 2024, 242
  • [26] Influence of the surface state on the corrosion behavior of the 316 L stainless steel manufactured by laser powder bed fusion
    Bedmar, J.
    Abu-warda, N.
    García-Rodríguez, S.
    Torres, B.
    Rams, J.
    Corrosion Science, 2022, 207
  • [27] Microstructure, Solidification Texture, and Thermal Stability of 316 L Stainless Steel Manufactured by Laser Powder Bed Fusion
    Krakhmalev, Pavel
    Fredriksson, Gunnel
    Svensson, Krister
    Yadroitsev, Igor
    Yadroitsava, Ina
    Thuvander, Mattias
    Peng, Ru
    METALS, 2018, 8 (08):
  • [28] Microstructure simulation and experimental evaluation of the anisotropy of 316 L stainless steel manufactured by laser powder bed fusion
    Omar Barrionuevo, German
    Andres Ramos-Grez, Jorge
    Walczak, Magdalena
    Sanchez-Sanchez, Xavier
    Guerra, Carolina
    Debut, Alexis
    Haro, Edison
    RAPID PROTOTYPING JOURNAL, 2023, 29 (03) : 425 - 436
  • [29] On the effect of rapid annealing on the microstructure and mechanical behavior of additively manufactured stainless steel by Laser Powder Bed Fusion
    Jandaghi, Mohammad Reza
    Saboori, Abdollah
    Iuliano, Luca
    Pavese, Matteo
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 828
  • [30] Creep and creep damage behavior of stainless steel 316L manufactured by laser powder bed fusion
    Calderon, L. A. Avila
    Rehmer, B.
    Schriever, S.
    Ulbricht, A.
    Jacome, L. Agudo
    Sommer, K.
    Mohr, G.
    Skrotzki, B.
    Evans, A.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 830