A novel 2.1 GPa martensitic stainless steel manufactured by laser powder bed fusion and post treatment

被引:0
|
作者
Wang, Qipeng [1 ]
Liang, Yuzheng [1 ]
Chen, Xinsheng [1 ]
Yang, Ziwei [1 ]
Dong, Kewei [1 ]
Peng, Yong [1 ]
Zhou, Qi [1 ]
Wang, Kehong [1 ]
Kong, Jian [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Mat Sci & Engn, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Martensitic stainless steel; Laser powder bed fusion; Microstructure; Mechanical properties; HIGH-STRENGTH; HEAT-TREATMENT; MICROSTRUCTURE; DUCTILITY;
D O I
10.1016/j.jmrt.2025.03.241
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ultra-high strength martensitic stainless steel prepared by traditional methods often has to go through forging or rolling process. In the work, A novel 20Cr13Co12Mo4Ni2 martensitic stainless steel was developed and manufactured by laser powder bed fusion (LPBF) and cryogenic + heat treatment. The ultimate tensile strength of martensitic stainless steel is 2121 MPa, and the elongation of fracture is 9.2 %. Due to cryogenic + heat treatment converts a large amount of austenite to martensite, and the high density dislocation generated by the rapid heating and cooling process of LPBF is retained, the sample has a dislocation density of 1.85 x 1016 m-2, which is comparable to forging and rolling. The high dislocation density can promote the nucleation of the second phase and make the precipitated phase small and dispersed, therefore, there are a large number of nanoscale rod-like (Fe,Cr)2Mo laves phase and M2C carbide precipitated in the heat-treated specimens. In addition, the cellular heterostructure formed by LPBF process can improve the ductility. Through theoretical calculation, the second phase strengthening is the main strengthening mechanism. The steels in this work have significant advantages in mechanical properties, and the trade-off between strength and ductility is well avoided.
引用
收藏
页码:1930 / 1937
页数:8
相关论文
共 50 条
  • [1] Corrosion of Duplex Stainless Steel Manufactured by Laser Powder Bed Fusion: A Critical Review
    Zhou, Yiqi
    Kong, Decheng
    Li, Ruixue
    He, Xing
    Dong, Chaofang
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2024, 37 (04) : 587 - 606
  • [2] Corrosion of Duplex Stainless Steel Manufactured by Laser Powder Bed Fusion: A Critical Review
    Yiqi Zhou
    Decheng Kong
    Ruixue Li
    Xing He
    Chaofang Dong
    Acta Metallurgica Sinica (English Letters), 2024, 37 : 587 - 606
  • [3] Nickel-Free Austenitic Stainless Steel Manufactured by Laser Powder-Bed Fusion from Martensitic Powder Mixed with Interstitial Compounds
    Somers, Marcel A.J.
    König, Christina
    Valente, Emilie H.
    Nadimpalli, Venkata K.
    Tokman, Yasmine Gigi
    Christiansen, Thomas L.
    HTM - Journal of Heat Treatment and Materials, 2024, 79 (06): : 269 - 287
  • [4] Effect of heat treatment on creep behavior of 316 L stainless steel manufactured by laser powder bed fusion
    Li, Meimei
    Chen, Wei-Ying
    Zhang, Xuan
    JOURNAL OF NUCLEAR MATERIALS, 2022, 559
  • [5] Quasi In-Situ Study of Microstructure in a Laser Powder Bed Fusion Martensitic Stainless Steel
    Ayda Shahriari
    Mehdi Sanjari
    Mahdi Mahmoudiniya
    Hadi Pirgazi
    Babak Shalchi Amirkhiz
    Leo A. I. Kestens
    Mohsen Mohammadi
    Metallurgical and Materials Transactions A, 2024, 55 : 1302 - 1310
  • [6] Quasi In-Situ Study of Microstructure in a Laser Powder Bed Fusion Martensitic Stainless Steel
    Shahriari, Ayda
    Sanjari, Mehdi
    Mahmoudiniya, Mahdi
    Pirgazi, Hadi
    Amirkhiz, Babak Shalchi
    Kestens, Leo A. I.
    Mohammadi, Mohsen
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2024, 55 (05): : 1302 - 1310
  • [7] Effect of heat treatment on the corrosion resistance of 316L stainless steel manufactured by laser powder bed fusion
    Liu, Wei
    Liu, Chengsong
    Wang, Yong
    Zhang, Hua
    Ni, Hongwei
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 32 : 3896 - 3912
  • [8] Effects of the heat treatment on the microstructure and corrosion behavior of 316 L stainless steel manufactured by Laser Powder Bed Fusion
    Bedmar, J.
    Garcia-Rodriguez, S.
    Roldan, M.
    Torres, B.
    Rams, J.
    CORROSION SCIENCE, 2022, 209
  • [9] Effect of post-treatments on the fatigue behaviour of 316L stainless steel manufactured by laser powder bed fusion
    Elangeswaran, Chola
    Cutolo, Antonio
    Muralidharan, Gokula Krishna
    de Formanoir, Charlotte
    Berto, Filippo
    Vanmeensel, Kim
    Van Hooreweder, Brecht
    INTERNATIONAL JOURNAL OF FATIGUE, 2019, 123 : 31 - 39
  • [10] Influence of hydrogen on the stress-relaxation properties of 17-4PH martensitic stainless steel manufactured by laser powder bed fusion
    Guennouni, N.
    Maisonnette, D.
    Grosjean, C.
    Andrieu, E.
    Poquillon, D.
    Blanc, C.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 831