NiFe-based electrocatalysts toward high-current-density overall water electrolysis

被引:0
|
作者
Li, Yongqi [1 ]
Li, Chen [1 ]
Ye, Beirong [1 ]
Tang, Tao [1 ]
Chen, Renhong [2 ]
Liang, Xinqi [1 ]
Xiang, Jiayuan [3 ]
Liu, Ping [4 ]
Xia, Xinhui [4 ]
Li, Sipu [1 ]
Zhang, Yongqi [1 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 611371, Peoples R China
[2] Univ South China, Sch Elect Engn, Hengyang 421001, Peoples R China
[3] Narada Power Source Co Ltd, Hangzhou 310014, Peoples R China
[4] Zhejiang Univ Technol, Coll Mat Sci & Engn, Hangzhou 310014, Peoples R China
基金
中国国家自然科学基金;
关键词
NiFe-based electrocatalysts; Water electrolysis; Electrocatalysts; Energy conversion;
D O I
10.1007/s10008-024-06106-y
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Water electrolysis provides a promising pathway for the large-scale production of hydrogen as a clean fuel, which plays an important role in the transition to a low-carbon or even no-carbon economy. Despite the considerable efforts undertaken to study non-precious metal electrocatalysts, there has been a scarcity of researches enlarging their application to industrial water splitting. The development of NiFe-based catalysts has been a significant interest due to their high activity and stability at high-current densities, which are expected to be broadly applicable. Given the discrepancy between laboratory and industrial water electrolysis, tremendous attentions have been focused on the advanced NiFe-based electrocatalysts. This review presents a summary of three principal strategies: intrinsic activity, superhydrophilic/superaerophobic surface properties, and scale-up fabrication. It provides essential guidance and solutions for the prospective design of industrial NiFe-based electrocatalysts, with the objective of facilitating high-quality advancement of the new energy industry and thereby alleviating the energy crisis.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Regulating electron density of NiFe-P nanosheets electrocatalysts by a trifle of Ru for high-efficient overall water splitting
    Qu, Meijiao
    Jiang, Yimin
    Yang, Miao
    Liu, Shu
    Guo, Qifei
    Shen, Wei
    Li, Ming
    He, Rongxing
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 263
  • [42] Application of In Situ Techniques for the Characterization of NiFe-Based Oxygen Evolution Reaction (OER) Electrocatalysts
    Zhu, Kaiyue
    Zhu, Xuefeng
    Yang, Weishen
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (05) : 1252 - 1265
  • [43] Investigation of NiFe-Based Catalysts for Oxygen Evolution in Anion-Exchange Membrane Electrolysis
    Zignani, Sabrina Campagna
    Lo Faro, Massimiliano
    Trocino, Stefano
    Arico, Antonino Salvatore
    ENERGIES, 2020, 13 (07)
  • [44] High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution
    Zhang, Chi
    Luo, Yuting
    Tan, Junyang
    Yu, Qiangmin
    Yang, Fengning
    Zhang, Zhiyuan
    Yang, Liusi
    Cheng, Hui-Ming
    Liu, Bilu
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [45] Bifunctional Porous Cobalt Phosphide Foam for High-Current-Density Alkaline Water Electrolysis with 4000-h Long Stability
    Li, Yue
    Wei, Bin
    Yu, Zhipeng
    Bondarchuk, Oleksandr
    Araujo, Ana
    Amorim, Isilda
    Zhang, Nan
    Xu, Junyuan
    Neves, Isabel C.
    Liu, Lifeng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (27) : 10193 - 10200
  • [46] A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts
    Ming Gong
    Hongjie Dai
    Nano Research, 2015, 8 : 23 - 39
  • [47] High-throughput production of cheap mineral-based two-dimensional electrocatalysts for high-current-density hydrogen evolution
    Chi Zhang
    Yuting Luo
    Junyang Tan
    Qiangmin Yu
    Fengning Yang
    Zhiyuan Zhang
    Liusi Yang
    Hui-Ming Cheng
    Bilu Liu
    Nature Communications, 11
  • [48] Sulfur incorporation into NiFe oxygen evolution electrocatalysts for improved high current density operation
    Wang, Jiaying
    Barforoush, Joseph M.
    Leonard, Kevin C.
    MATERIALS ADVANCES, 2023, 4 (01): : 122 - 133
  • [49] High current density electrodeposition of NiFe/Nickel Foam as a bifunctional electrocatalyst for overall water splitting in alkaline electrolyte
    Lian, Jiqiong
    Wu, Yihui
    Sun, Jingjing
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (31) : 15140 - 15151
  • [50] High current density electrodeposition of NiFe/Nickel Foam as a bifunctional electrocatalyst for overall water splitting in alkaline electrolyte
    Jiqiong Lian
    Yihui Wu
    Jingjing Sun
    Journal of Materials Science, 2020, 55 : 15140 - 15151