US FDA Approval of Pediatric Artificial Intelligence and Machine Learning-Enabled Medical Devices

被引:0
|
作者
Brewster, Ryan C. L. [1 ]
Nagy, Matthew [1 ]
Wunnava, Susmitha [2 ]
Bourgeois, Florence T. [1 ,2 ,3 ]
机构
[1] Harvard Med Sch, Boston Childrens Hosp, Dept Pediat, Boston, MA USA
[2] Harvard Med Sch, Harvard MIT Ctr Regulatory Sci, Boston, MA USA
[3] Boston Childrens Hosp, Computat Hlth Informat Program, Pediat Therapeut & Regulatory Sci Initiat, Boston, MA USA
关键词
D O I
10.1001/jamapediatrics.2024.5437
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
引用
收藏
页码:212 / 214
页数:3
相关论文
共 50 条
  • [31] Deep learning-enabled medical computer vision
    Andre Esteva
    Katherine Chou
    Serena Yeung
    Nikhil Naik
    Ali Madani
    Ali Mottaghi
    Yun Liu
    Eric Topol
    Jeff Dean
    Richard Socher
    npj Digital Medicine, 4
  • [32] Overview of the US FDA Medical Device Approval Process
    Ashwani Sastry
    Current Cardiology Reports, 2014, 16
  • [33] Overview of the US FDA Medical Device Approval Process
    Sastry, Ashwani
    CURRENT CARDIOLOGY REPORTS, 2014, 16 (06)
  • [34] Machine Learning-Enabled Noncontact Sleep Structure Prediction
    Zhai, Qian
    Tang, Tingyu
    Lu, Xiaoling
    Zhou, Xiaoxi
    Li, Chunguang
    Yi, Jingang
    Liu, Tao
    ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (05)
  • [35] Industry ties and evidence in public comments on the FDA framework for modifications to artificial intelligence/machine learning-based medical devices: a cross sectional study
    Smith, James Andrew
    Abhari, Roxanna E.
    Hussain, Zain
    Heneghan, Carl
    Collins, Gary S.
    Carr, Andrew J.
    BMJ OPEN, 2020, 10 (10):
  • [36] United States regulatory approval of medical devices and software applications enhanced by artificial intelligence
    Yaeger, Kurt A.
    Martini, Michael
    Yaniv, Gal
    Oermann, Eric K.
    Costa, Anthony B.
    HEALTH POLICY AND TECHNOLOGY, 2019, 8 (02) : 192 - 197
  • [37] Artificial Q-Grader: Machine Learning-Enabled Intelligent Olfactory and Gustatory Sensing System
    Jang, Moonjeong
    Bae, Garam
    Kwon, Yeong Min
    Cho, Jae Hee
    Lee, Do Hyung
    Kang, Saewon
    Yim, Soonmin
    Myung, Sung
    Lim, Jongsun
    Lee, Sun Sook
    Song, Wooseok
    An, Ki-Seok
    ADVANCED SCIENCE, 2024, 11 (23)
  • [38] Machine learning-enabled globally guaranteed evolutionary computation
    Li, Bin
    Wei, Ziping
    Wu, Jingjing
    Yu, Shuai
    Zhang, Tian
    Zhu, Chunli
    Zheng, Dezhi
    Guo, Weisi
    Zhao, Chenglin
    Zhang, Jun
    NATURE MACHINE INTELLIGENCE, 2023, 5 (04) : 457 - 467
  • [39] Machine learning-enabled globally guaranteed evolutionary computation
    Bin Li
    Ziping Wei
    Jingjing Wu
    Shuai Yu
    Tian Zhang
    Chunli Zhu
    Dezhi Zheng
    Weisi Guo
    Chenglin Zhao
    Jun Zhang
    Nature Machine Intelligence, 2023, 5 : 457 - 467
  • [40] Detailed Implementation of a Reproducible Machine Learning-Enabled Workflow
    Schackart K.E., III
    Imker H.J.
    Cook C.E.
    Data Science Journal, 2024, 23 (01)