Sharing Control Knowledge Among Heterogeneous Intersections: A Distributed Arterial Traffic Signal Coordination Method Using Multi-Agent Reinforcement Learning

被引:0
|
作者
Zhu, Hong [1 ]
Feng, Jialong [1 ]
Sun, Fengmei [1 ]
Tang, Keshuang [1 ]
Zang, Di [2 ,3 ]
Kang, Qi [4 ,5 ]
机构
[1] Tongji Univ, Coll Transportat Engn, Key Lab Rd & Traff Engn, Minist Educ, Shanghai 201804, Peoples R China
[2] Tongji Univ, Dept Comp Sci & Technol, Shanghai 200092, Peoples R China
[3] Tongji Univ, Serv Comp, Key Lab Embedded Syst, Minist Educ, Shanghai 200092, Peoples R China
[4] Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China
[5] Tongji Univ, Shanghai Inst Intelligent Sci & Technol, Shanghai 200092, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimization; Adaptation models; Process control; Reinforcement learning; Training; Stability criteria; Roads; Real-time systems; Electronic mail; Delays; Arterial traffic signal control; multi-agent reinforcement learning; proximal policy optimization; experience sharing; REAL-TIME; MODEL; SYSTEM;
D O I
10.1109/TITS.2024.3521514
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Treating each intersection as basic agent, multi-agent reinforcement learning (MARL) methods have emerged as the predominant approach for distributed adaptive traffic signal control (ATSC) in multi-intersection scenarios, such as arterial coordination. MARL-based ATSC currently faces two challenges: disturbances from the control policies of other intersections may impair the learning and control stability of the agents; and the heterogeneous features across intersections may complicate coordination efforts. To address these challenges, this study proposes a novel MARL method for distributed ATSC in arterials, termed the Distributed Controller for Heterogeneous Intersections (DCHI). The DCHI method introduces a Neighborhood Experience Sharing (NES) framework, wherein each agent utilizes both local data and shared experiences from adjacent intersections to improve its control policy. Within this framework, the neural networks of each agent are partitioned into two parts following the Knowledge Homogenizing Encapsulation (KHE) mechanism. The first part manages heterogeneous intersection features and transforms the control experiences, while the second part optimizes homogeneous control logic. Experimental results demonstrate that the proposed DCHI achieves efficiency improvements in average travel time of over 30% compared to traditional methods and yields similar performance to the centralized sharing method. Furthermore, vehicle trajectories reveal that DCHI can adaptively establish green wave bands in a distributed manner. Given its superior control performance, accommodation of heterogeneous intersections, and low reliance on information networks, DCHI could significantly advance the application of MARL-based ATSC methods in practice.
引用
收藏
页码:2760 / 2776
页数:17
相关论文
共 50 条
  • [21] Distributed Service Area Control for Ride Sharing by using Multi-Agent Deep Reinforcement Learning
    Yoshida, Naoki
    Noda, Itsuki
    Sugawara, Toshiharu
    ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 1, 2021, : 101 - 112
  • [22] Traffic signal control using a cooperative EWMA-based multi-agent reinforcement learning
    Zhimin Qiao
    Liangjun Ke
    Xiaoqiang Wang
    Applied Intelligence, 2023, 53 : 4483 - 4498
  • [23] XLight: An interpretable multi-agent reinforcement learning approach for traffic signal control
    Cai, Sibin
    Fang, Jie
    Xu, Mengyun
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 273
  • [24] Multi-Agent Deep Reinforcement Learning for Decentralized Cooperative Traffic Signal Control
    Zhao, Yang
    Hu, Jian-Ming
    Gao, Ming-Yang
    Zhang, Zuo
    CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 458 - 470
  • [25] Multi-Agent Reinforcement Learning for Traffic Signal Control: Algorithms and Robustness Analysis
    Wu, Chunliang
    Ma, Zhenliang
    Kim, Inhi
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [26] PyTSC: A Unified Platform for Multi-Agent Reinforcement Learning in Traffic Signal Control
    Bokade, Rohit
    Jin, Xiaoning
    SENSORS, 2025, 25 (05)
  • [27] A multi-agent reinforcement learning based approach for intelligent traffic signal control
    Benhamza, Karima
    Seridi, Hamid
    Agguini, Meriem
    Bentagine, Amel
    EVOLVING SYSTEMS, 2024, 15 (06) : 2383 - 2397
  • [28] Traffic signal control using a cooperative EWMA-based multi-agent reinforcement learning
    Qiao, Zhimin
    Ke, Liangjun
    Wang, Xiaoqiang
    APPLIED INTELLIGENCE, 2023, 53 (04) : 4483 - 4498
  • [29] Distributed output formation tracking control of heterogeneous multi-agent systems using reinforcement learning
    Shi, Yu
    Dong, Xiwang
    Hua, Yongzhao
    Yu, Jianglong
    Ren, Zhang
    ISA TRANSACTIONS, 2023, 138 : 318 - 328
  • [30] Reinforcement learning of coordination in heterogeneous cooperative multi-agent systems
    Kapetanakis, S
    Kudenko, D
    ADAPTIVE AGENTS AND MULTI-AGENT SYSTEMS II: ADAPTATION AND MULTI-AGENT LEARNING, 2005, 3394 : 119 - 131