Sample selection using multi-task autoencoders in federated learning with non-IID data

被引:0
|
作者
Ardic, Emre [1 ]
Genc, Yakup [1 ]
机构
[1] Gebze Tech Univ, Dept Comp Engn, TR-41400 Gebze, Turkiye
来源
ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH | 2025年 / 61卷
关键词
Federated learning; Data valuation; Unsupervised outlier detection; Multi-task autoencoder;
D O I
10.1016/j.jestch.2024.101920
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Federated learning is a machine learning paradigm in which multiple devices collaboratively train a model under the supervision of a central server while ensuring data privacy. However, its performance is often hindered by redundant, malicious, or abnormal samples, leading to model degradation and inefficiency. To overcome these issues, we propose novel sample selection methods for image classification, employing a multitask autoencoder to estimate sample contributions through loss and feature analysis. Our approach incorporates unsupervised outlier detection, using one-class support vector machine (OCSVM), isolation forest (IF), and adaptive loss threshold (AT) methods managed by a central server to filter noisy samples on clients. We also propose a multi-class deep support vector data description (SVDD) loss controlled by a central server to enhance feature-based sample selection. We validate our methods on CIFAR10 and MNIST datasets across varying numbers of clients, non-IID distributions, and noise levels up to 40%. The results show significant accuracy improvements with loss-based sample selection, achieving gains of up to 7.02% on CIFAR10 with OCSVM and 1.83% on MNIST with AT. Additionally, our federated SVDD loss further improves feature-based sample selection, yielding accuracy gains of up to 0.99% on CIFAR10 with OCSVM. These results show the effectiveness of our methods in improving model accuracy across various client counts and noise conditions.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A General Federated Learning Scheme with Blockchain on Non-IID Data
    Wu, Hao
    Zhao, Shengnan
    Zhao, Chuan
    Jing, Shan
    INFORMATION SECURITY AND CRYPTOLOGY, INSCRYPT 2023, PT I, 2024, 14526 : 126 - 140
  • [32] FedProc: Prototypical contrastive federated learning on non-IID data
    Mu, Xutong
    Shen, Yulong
    Cheng, Ke
    Geng, Xueli
    Fu, Jiaxuan
    Zhang, Tao
    Zhang, Zhiwei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2023, 143 : 93 - 104
  • [33] Data independent warmup scheme for non-IID federated learning
    Arafeh, Mohamad
    Ould-Slimane, Hakima
    Otrok, Hadi
    Mourad, Azzam
    Talhi, Chamseddine
    Damiani, Ernesto
    INFORMATION SCIENCES, 2023, 623 : 342 - 360
  • [34] FedPD: A Federated Learning Framework With Adaptivity to Non-IID Data
    Zhang, Xinwei
    Hong, Mingyi
    Dhople, Sairaj
    Yin, Wotao
    Liu, Yang
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 (69) : 6055 - 6070
  • [35] FedCML: Federated Clustering Mutual Learning with non-IID Data
    Chen, Zekai
    Wang, Fuyi
    Yu, Shengxing
    Liu, Ximeng
    Zheng, Zhiwei
    EURO-PAR 2023: PARALLEL PROCESSING, 2023, 14100 : 623 - 636
  • [36] Heterogeneous Federated Learning for Non-IID Smartwatch Data Classification
    Syu, Jia-Hao
    Lin, Jerry Chun-Wei
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (18): : 29811 - 29818
  • [37] Ensemble Federated Learning With Non-IID Data in Wireless Networks
    Zhao, Zhongyuan
    Wang, Jingyi
    Hong, Wei
    Quek, Tony Q. S.
    Ding, Zhiguo
    Peng, Mugen
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (04) : 3557 - 3571
  • [38] Advanced Optimization Techniques for Federated Learning on Non-IID Data
    Efthymiadis, Filippos
    Karras, Aristeidis
    Karras, Christos
    Sioutas, Spyros
    FUTURE INTERNET, 2024, 16 (10)
  • [39] Feature Matching Data Synthesis for Non-IID Federated Learning
    Li, Zijian
    Sun, Yuchang
    Shao, Jiawei
    Mao, Yuyi
    Wang, Jessie Hui
    Zhang, Jun
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (10) : 9352 - 9367
  • [40] FedKT: Federated learning with knowledge transfer for non-IID data
    Mao, Wenjie
    Yu, Bin
    Zhang, Chen
    Qin, A. K.
    Xie, Yu
    PATTERN RECOGNITION, 2025, 159