Accelerating enzyme discovery and engineering with high-throughput screening

被引:0
|
作者
Bozkurt, Eray U. [1 ]
Orsted, Emil C. [1 ]
Volke, Daniel C. [1 ]
Nikel, Pablo I. [1 ]
机构
[1] Tech Univ Denmark, Novo Nord Fdn Ctr Biosustainabil, DK-2800 Lyngby, Denmark
关键词
CELL-SURFACE DISPLAY; IN-VITRO; DIRECTED EVOLUTION; CRISPR-CAS; MANIPULATION; BACTERIAL; DESIGN; IDENTIFICATION; MICROFLUIDICS; BIOCATALYSIS;
D O I
10.1039/d4np00031e
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Covering: up to August 2024Enzymes play an essential role in synthesizing value-added chemicals with high specificity and selectivity. Since enzymes utilize substrates derived from renewable resources, biocatalysis offers a pathway to an efficient bioeconomy with reduced environmental footprint. However, enzymes have evolved over millions of years to meet the needs of their host organisms, which often do not align with industrial requirements. As a result, enzymes frequently need to be tailored for specific industrial applications. Combining enzyme engineering with high-throughput screening has emerged as a key approach for developing novel biocatalysts, but several challenges are yet to be addressed. In this review, we explore emergent strategies and methods for isolating, creating, and characterizing enzymes optimized for bioproduction. We discuss fundamental approaches to discovering and generating enzyme variants and identifying those best suited for specific applications. Additionally, we cover techniques for creating libraries using automated systems and highlight innovative high-throughput screening methods that have been successfully employed to develop novel biocatalysts for natural product synthesis. Recent progress in the DBTL cycle, including machine learning, facilitated enzyme mining for biocatalysis. Automation and standardization of library construction, coupled to high-throughput screening, further accelerates the enzyme discovery process.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Accelerating High-Throughput Screening for Structural Materials with Production Management Methods
    Bader, Alexander
    Meiners, Finn
    Tracht, Kirsten
    MATERIALS, 2018, 11 (08)
  • [42] Engineering of a Highly Efficient Polyethylene Terephthalate Hydrolase via High-throughput Enzyme Evolution and Screening
    Groseclose, Thomas
    Kober, Erin
    Pickford, Andrew
    Beckham, Gregg
    Dale, Taraka
    Nguyen, Hau
    PROTEIN SCIENCE, 2023, 32 (12)
  • [43] High-throughput screening - Reliability issues in high-throughput screening systems
    Brandt, DW
    BIOPHARM-THE APPLIED TECHNOLOGIES OF BIOPHARMACEUTICAL DEVELOPMENT, 1998, 11 (02): : 30 - +
  • [44] High-Throughput Contractile Force Screening for Discovery of Novel Bronchodilators
    Park, Chan
    Burger, Stephanie
    Watts, Eleanor
    Frykenberg, Matthew
    Tambe, Dhananjay
    Zhou, Enhua
    Krishinan, Ramaswamy
    Marinkovic, Aleksander
    Tschumperlin, Daniel
    Butler, James
    Solway, Julian
    Fredberg, Jeffrey
    FASEB JOURNAL, 2016, 30
  • [45] High-Throughput Native Mass Spectrometry Screening in Drug Discovery
    Gavriilidou, Agni F. M.
    Sokratous, Kleitos
    Yen, Hsin-Yung
    De Colibus, Luigi
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [46] High-Throughput Screening of Stapled Helical Peptides in Drug Discovery
    Zhang, Yiwei
    Guo, Jiabei
    Cheng, Jiongjia
    Zhang, Zhenghua
    Kang, Fenghua
    Wu, Xiaoxing
    Chu, Qian
    JOURNAL OF MEDICINAL CHEMISTRY, 2023, 66 (01) : 95 - 106
  • [47] Streamlining lead discovery by aligning in silico and high-throughput screening
    Davies, John W.
    Glick, Meir
    Jenkins, Jeremy L.
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2006, 10 (04) : 343 - 351
  • [48] High-throughput screening: speeding up porous materials discovery
    Wollmann, Philipp
    Leistner, Matthias
    Stoeck, Ulrich
    Gruenker, Ronny
    Gedrich, Kristina
    Klein, Nicole
    Throl, Oliver
    Graehlert, Wulf
    Senkovska, Irena
    Dreisbach, Frieder
    Kaskel, Stefan
    CHEMICAL COMMUNICATIONS, 2011, 47 (18) : 5151 - 5153
  • [49] High-throughput computational materials screening and discovery of optoelectronic semiconductors
    Luo, Shulin
    Li, Tianshu
    Wang, Xinjiang
    Faizan, Muhammad
    Zhang, Lijun
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2021, 11 (01)
  • [50] Distributed Virtual High-Throughput Screening: A boon for drug discovery
    Begemann, John H.
    Scientific Computing and Instrumentation, 2004, 21 (03): : 18 - 24