Large Language Models for Financial and Investment Management: Applications and Benchmarks

被引:0
|
作者
Kong, Yaxuan [1 ]
Nie, Yuqi [2 ]
Dong, Xiaowen [1 ]
Mulvey, John M. [3 ]
Poor, H. Vincent [2 ]
Wen, Qingsong [4 ]
Zohren, Stefan
机构
[1] Univ Oxford, Dept Engn Sci, Oxford, England
[2] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ USA
[3] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ USA
[4] Squirrel AI Learning, Bellevue, WA USA
来源
JOURNAL OF PORTFOLIO MANAGEMENT | 2024年 / 51卷 / 02期
关键词
SENTIMENT ANALYSIS; TEXTUAL ANALYSIS;
D O I
暂无
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
The rapid evolution and unprecedented advancements in large language models (LLMs) have ushered in a new era of innovation in the realm of machine learning, with far-reaching implications for the finance and investment management sectors. These models have exhibited remarkable prowess in contextual understanding, processing vast and complex datasets, and generating content that aligns closely with human preferences. The transformative potential of LLMs in finance has catalyzed a surge of research and applications. As the integration of LLMs into financial practices continues to accelerate, there is an urgent need for a systematic examination of their diverse applications, methodologies, and impact, which necessitates a comprehensive review and synthesis of recent developments in this rapidly evolving field. This article aims to bridge the gap between cutting-edge artificial intelligence technology and its practical implementation in finance, providing a robust framework for understanding and leveraging LLMs in financial contexts. The authors explore the application of LLMs on various financial tasks, focusing on their potential to transform traditional practices and drive innovation. The article is highlighted for categorizing the existing literature into key application areas, including linguistic tasks, sentiment analysis, financial time series, financial reasoning, and agent-based modeling. For each application area, the authors delve into specific methodologies, such as textual analysis, knowledge-based analysis, forecasting, data augmentation, planning, decision support, and simulations. Furthermore, the article provides a comprehensive collection of datasets, benchmarks, and useful code associated with mainstream applications, offering valuable resources for researchers and practitioners. The authors hope their work can help facilitate the adoption and further development ofLLMs in finance and investment management.
引用
收藏
页码:162 / 210
页数:49
相关论文
共 50 条
  • [21] A survey on augmenting knowledge graphs (KGs) with large language models (LLMs): models, evaluation metrics, benchmarks, and challenges
    Ibrahim, Nourhan
    Aboulela, Samar
    Ibrahim, Ahmed
    Kashef, Rasha
    Discover Artificial Intelligence, 2024, 4 (01):
  • [22] Benchmarking Large Language Models on CFLUE - A Chinese Financial Language Understanding Evaluation Dataset
    Zhu, Jie
    Li, Junhui
    Wen, Yalong
    Guo, Lifan
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 5673 - 5693
  • [23] Integrating large language models with internet of things: applications
    Mingyu Zong
    Arvin Hekmati
    Michael Guastalla
    Yiyi Li
    Bhaskar Krishnamachari
    Discover Internet of Things, 5 (1):
  • [24] Applications of large language models in psychiatry: a systematic review
    Omar, Mahmud
    Soffer, Shelly
    Charney, Alexander W.
    Landi, Isotta
    Nadkarni, Girish N.
    Klang, Eyal
    FRONTIERS IN PSYCHIATRY, 2024, 15
  • [25] Novel applications of large language models in clinical research
    Abers, Michael S.
    Mathias, Rasika A.
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2025, 155 (03) : 813 - 814
  • [26] An analysis of large language models: their impact and potential applications
    Bharathi Mohan, G.
    Prasanna Kumar, R.
    Vishal Krishh, P.
    Keerthinathan, A.
    Lavanya, G.
    Meghana, Meka Kavya Uma
    Sulthana, Sheba
    Doss, Srinath
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (09) : 5047 - 5070
  • [27] Are Large Language Models (LLMs) Ready for Agricultural Applications?
    Shende, Ketan
    Resource: Engineering and Technology for Sustainable World, 2025, 32 (01): : 28 - 30
  • [28] Large language models: a survey of their development, capabilities, and applications
    Annepaka, Yadagiri
    Pakray, Partha
    KNOWLEDGE AND INFORMATION SYSTEMS, 2025, 67 (03) : 2967 - 3022
  • [29] Unleashing the Power of Large Language Models for Legal Applications
    Zhang, Dell
    Petrova, Alina
    Trautmann, Dietrich
    Schilder, Frank
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 5257 - 5258
  • [30] Maturity models and benchmarks in knowledge management
    Durham, M
    Bianchetti, F
    Sparks, JA
    Boettger, S
    ASIST 2003: PROCEEDINGS OF THE 66TH ASIST ANNUAL MEETING, VOL 40, 2003: HUMANIZING INFORMATION TECHNOLOGY: FROM IDEAS TO BITS AND BACK, 2003, 40 : 471 - 471