Aggregated Mutual Learning between CNN and Transformer for semi-supervised medical image segmentation

被引:0
|
作者
Xu, Zhenghua [1 ,2 ]
Wang, Hening [1 ]
Yang, Runhe [1 ,2 ]
Yang, Yuchen [4 ]
Liu, Weipeng [1 ,3 ]
Lukasiewicz, Thomas [5 ,6 ]
机构
[1] Hebei Univ Technol, State Key Lab Reliabil & Intelligence Elect Equip, Tianjin, Peoples R China
[2] Hebei Univ Technol, Sch Hlth Sci & Biomed Engn, Tianjin, Peoples R China
[3] Hebei Univ Technol, Sch Artificial Intelligence, Tianjin, Peoples R China
[4] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD USA
[5] Vienna Univ Technol, Inst Log & Computat, Vienna, Austria
[6] Univ Oxford, Dept Comp Sci, Oxford, England
关键词
Medical image segmentation; Semi-supervision learning; Mutual learning; Vision Transformer;
D O I
10.1016/j.knosys.2025.113005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent Advances show that both Convolutional layers and Transformer blocks have their own advantages in the feature learning tasks of medical image analysis. However, the existing models combining both CNN and Transformers cannot effectively integrate the features extracted by both networks. In this work, we propose anew semi-supervised medical image segmentation method which can effectively aggregate mutual learning between CNN and Transformer, denoted AML-CT, which consists of an auxiliary module and amain network. Specifically, the auxiliary module consists of two segmentation subnetworks based on CNN and Transformer, aiming at extracting features from different perspectives, where, to enhance integration of image features from distinct segmentation networks, a Cross-Branch Feature Fusion module is proposed to effectively fuses local and global information via internal cross-fusion of feature maps between networks. Then, to aggregate the extracted image features from the auxiliary module, a three-branch network (TB-net) structure is further proposed to learn the extracted joint features and facilitate aggregation of multi-source information. Experimental results on two public datasets demonstrate that: (i) AML-CT successfully accomplishes medical image segmentation tasks with limited labeled data, outperforming recent mainstream semi-supervised segmentation methods; (ii) Ablation studies confirm the effectiveness of each module in the AML-CT model for performance improvement.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Uncertainty Global Contrastive Learning Framework for Semi-Supervised Medical Image Segmentation
    Liu, Hengyang
    Ren, Pengcheng
    Yuan, Yang
    Song, Chengyun
    Luo, Fen
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (01) : 433 - 442
  • [32] Model-Heterogeneous Semi-Supervised Federated Learning for Medical Image Segmentation
    Ma, Yuxi
    Wang, Jiacheng
    Yang, Jing
    Wang, Liansheng
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (05) : 1804 - 1815
  • [33] Combining contrastive learning and shape awareness for semi-supervised medical image segmentation
    Chen, Yaqi
    Chen, Faquan
    Huang, Chenxi
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 242
  • [34] Semi-supervised Medical Image Segmentation via Learning Consistency Under Transformations
    Bortsova, Gerda
    Dubost, Florian
    Hogeweg, Laurens
    Katramados, Ioannis
    de Bruijne, Marleen
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI, 2019, 11769 : 810 - 818
  • [35] MULTI-TASK CURRICULUM LEARNING FOR SEMI-SUPERVISED MEDICAL IMAGE SEGMENTATION
    Wang, Kaiping
    Zhan, Bo
    Luo, Yanmei
    Zhou, Jiliu
    Wu, Xi
    Wang, Yan
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 925 - 928
  • [36] Semi-supervised learning and graph cuts for consensus based medical image segmentation
    Mahapatra, Dwarikanath
    PATTERN RECOGNITION, 2017, 63 : 700 - 709
  • [37] Semi-supervised Contrastive Learning for Label-Efficient Medical Image Segmentation
    Hu, Xinrong
    Zeng, Dewen
    Xu, Xiaowei
    Shi, Yiyu
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT II, 2021, 12902 : 481 - 490
  • [38] Interactive Dual-model Learning for Semi-supervised Medical Image Segmentation
    Fang C.-W.
    Li X.
    Li Z.-Y.
    Jiao L.-C.
    Zhang D.-W.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (04): : 805 - 819
  • [39] Prototype-oriented contrastive learning for semi-supervised medical image segmentation
    Liu, Zihang
    Zhang, Haoran
    Zhao, Chunhui
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 88
  • [40] GAN inversion-based semi-supervised learning for medical image segmentation
    Feng, Xin
    Lin, Jianyong
    Feng, Chun-Mei
    Lu, Guangming
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 88