Few-shot aero-engine bearing fault diagnosis with denoising diffusion based data augmentation

被引:0
|
作者
Ping, Zuowei [1 ]
Wang, Dewen [2 ]
Zhang, Yong [2 ]
Bo, Ding [3 ]
Duan, Yaqiong [2 ]
Zhou, Wei [2 ]
机构
[1] Naval Univ Engn, Natl Key Lab Electromagnet Energy, Wuhan, Peoples R China
[2] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Peoples R China
[3] Yangzhou Univ, Coll Informat Engn, Yangzhou 225000, Peoples R China
基金
中国国家自然科学基金;
关键词
Denoising diffusion probabilistic models; Data augmentation; Synchro-squeezed wavelet transform; Rolling bearings; Aero-engine; Fault diagnosis;
D O I
10.1016/j.neucom.2024.129327
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As a core component of aero-engines, the health condition of rolling bearings is crucial to the safety and stability of the aviation power system. In the fault diagnosis of aero-engine rolling bearings, the issue of insufficient fault data has long persisted. The training process of the widely introduced Generative Adversarial Networks (GANs) is difficult to control, and their generalization ability is relatively poor. Therefore, this paper proposes a data augmentation method based on denoising diffusion probabilistic model (DDPM) for aero-engine bearing fault diagnosis under few-shot. The proposed method is grounded in a well-defined probabilistic model and mathematical principles, allowing it to avoid instability and mode collapse during training. Specifically, we first propose using the synchro-squeezed wavelet transform (SST) to convert one-dimensional time-series signals into time-domain images as model input, addressing the insufficient feature extraction of traditional time-frequency analysis methods and clearly illustrating the fault characteristics of frequency variation with time. Next, we design a CRR-UNet based on residual connections to mitigate overfitting caused by insufficient data during the reverse denoising process of DDPM, thereby improving the quality of generated samples. Finally, a deep residual shrinkage network (DRSN) is employed to conduct fault diagnosis on the augmented fault dataset. The research results show that the samples generated by this method are highly similar to the original samples, outperforming existing data augmentation methods, and the fault diagnosis accuracy on the augmented dataset reaches 98%, significantly improving fault diagnosis performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Category knowledge-guided few-shot bearing fault diagnosis
    Zhan, Feng
    Hu, Lingkai
    Huang, Wenkai
    Dong, Yikai
    He, Hao
    Wu, Guanjun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 139
  • [22] Few-shot transfer learning with attention for intelligent fault diagnosis of bearing
    Yao Hu
    Qingyu Xiong
    Qiwu Zhu
    Zhengyi Yang
    Zhiyuan Zhang
    Dan Wu
    Zihui Wu
    Journal of Mechanical Science and Technology, 2022, 36 : 6181 - 6192
  • [23] A Deep Learning-Based Method for Bearing Fault Diagnosis with Few-Shot Learning
    Li, Yang
    Gu, Xiaojiao
    Wei, Yonghe
    SENSORS, 2024, 24 (23)
  • [24] Aero-engine fault diagnosis based on Boosting-SVM
    Sun, Chao-Ying
    Liu, Lu
    Liu, Chuan-Wu
    Wei, Xun-Kai
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2010, 25 (11): : 2584 - 2588
  • [25] Few-shot transfer learning with attention for intelligent fault diagnosis of bearing
    Hu, Yao
    Xiong, Qingyu
    Zhu, Qiwu
    Yang, Zhengyi
    Zhang, Zhiyuan
    Wu, Dan
    Wu, Zihui
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2022, 36 (12) : 6181 - 6192
  • [26] Fault diagnosis of aero-engine inter-shaft bearing based on Deep-GBM
    Tian J.
    Li Y.
    Ai Y.
    Hangkong Dongli Xuebao/Journal of Aerospace Power, 2019, 34 (04): : 756 - 763
  • [27] Compound Fault Diagnosis of Aero-Engine Rolling Element Bearing Based on CCA Blind Extraction
    Zhang, Wei-Tao
    Ji, Xiao-Fan
    Huang, Ju
    Lou, Shun-Tian
    IEEE ACCESS, 2021, 9 : 159873 - 159881
  • [28] Collaborative Sparse Low Rank Regularization for Aero-Engine Bearing Fault Diagnosis
    Zhang H.
    Wang X.
    Tian Y.
    Lin J.
    Du Z.
    1600, Xi'an Jiaotong University (55): : 46 - 58
  • [29] Fault Diagnosis for Actuator of Aero-Engine Based on Associated Observers
    Gou, Linfeng
    Wang, Lulu
    Zhou, Zihan
    Liang, Aixia
    Liu, Zhidan
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 6110 - 6114
  • [30] Research on fault diagnosis of aero-engine based on SOM network
    Tian, Feng
    Mei, Jiaqi
    Feng, Zhigang
    Ge, Zhimei
    Journal of Computational Information Systems, 2013, 9 (19): : 7749 - 7756