Estimating coccidioidomycosis endemicity while accounting for imperfect detection using spatio-temporal occupancy modeling

被引:0
|
作者
Hepler, Staci A. [1 ]
Kaufeld, Kimberly A. [2 ]
Kline, David [3 ]
Greene, Andrew [2 ]
Gorris, Morgan E. [4 ]
机构
[1] Wake Forest Univ, Dept Stat Sci, POB 7388, Winston Salem, NC 27109 USA
[2] Los Alamos Natl Lab, Stat Sci Grp, Los Alamos, NM 87545 USA
[3] Wake Forest Univ, Dept Biostat & Data Sci, Sch Med, Winston Salem, NC 27101 USA
[4] Los Alamos Natl Lab, Ctr Nonlinear Studies, Informat Syst & Modeling Grp, Los Alamos, NM 87545 USA
关键词
valley fever; spatio-temporal; Bayesian; underreporting; surveillance; VALLEY FEVER INCIDENCE; UNITED-STATES; KERN COUNTY; CLIMATE; CALIFORNIA;
D O I
10.1093/aje/kwae199
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Coccidioidomycosis, or Valley fever, is an infectious disease caused by inhalingCoccidioidesfungal spores. Incidence has risen in recentyears, and it is believed the endemic region forCoccidioidesis expanding in response to climate change. While Valley fever casedata can help us understand trends in disease risk, using case data as a proxy forCoccidioidesendemicity is not ideal because casedata suffer from imperfect detection, including false positives (eg, travel-related cases reported outside of endemic area) and falsenegatives (eg, misdiagnosis or underreporting). We proposed a Bayesian, spatio-temporal occupancy model to relate monthly, county-level presence/absence data on Valley fever cases to latent endemicity ofCoccidioides, accounting for imperfect detection. We usedour model to estimate endemicity in the western United States. We estimated high probability of endemicity in southern California,Arizona, and New Mexico, but also in regions without mandated reporting, including western Texas, eastern Colorado, and southeasternWashington. We also quantified spatio-temporal variability in detectability of Valley fever, given an area is endemic toCoccidioides.Weestimated an inverse relationship between lagged 3- and 9-month precipitation and case detection, and a positive association withagriculture. This work can help inform public health surveillance needs and identify areas that would benefit from mandatory casereporting. This article is part of a Special Collection on Environmental Epidemiology.
引用
收藏
页码:56 / 63
页数:8
相关论文
共 50 条
  • [21] Spatio-temporal saliency detection using objectness measure
    Khawla Brahim
    Rahma Kalboussi
    Mehrez Abdellaoui
    Ali Douik
    Signal, Image and Video Processing, 2019, 13 : 1055 - 1062
  • [22] Event Detection using Twitter: A Spatio-Temporal Approach
    Cheng, Tao
    Wicks, Thomas
    PLOS ONE, 2014, 9 (06):
  • [23] Overtaking Vehicle Detection Using A Spatio-temporal CRF
    Zhang, Xuetao
    Jiang, Peilin
    Wang, Fei
    2014 IEEE INTELLIGENT VEHICLES SYMPOSIUM PROCEEDINGS, 2014, : 338 - 343
  • [24] Spatio-temporal saliency detection using objectness measure
    Brahim, Khawla
    Kalboussi, Rahma
    Abdellaoui, Mehrez
    Douik, Ali
    SIGNAL IMAGE AND VIDEO PROCESSING, 2019, 13 (06) : 1055 - 1062
  • [25] Estimating Activity Patterns Using Spatio-temporal Data of Cellphone Networks
    Zahedi, Seyedmostafa
    Shafahi, Yousef
    2016 5TH INTERNATIONAL CONFERENCE ON TRANSPORTATION AND TRAFFIC ENGINEERING (ICTTE 2016), 2016, 81
  • [26] sp Timer: Spatio-Temporal Bayesian Modeling Using R
    Bakar, Khandoker Shuvo
    Sahu, Sujit K.
    JOURNAL OF STATISTICAL SOFTWARE, 2015, 63 (15): : 1 - 32
  • [27] Modeling Spatio-temporal Change Pattern using Mathematical Morphology
    Das, Monidipa
    Ghosh, Soumya K.
    PROCEEDINGS OF THE THIRD ACM IKDD CONFERENCE ON DATA SCIENCES (CODS), 2016,
  • [28] Spatio-temporal modeling of global ozone data using convolution
    Yang Li
    Zhengyuan Zhu
    Japanese Journal of Statistics and Data Science, 2020, 3 : 153 - 166
  • [29] Spatio-temporal modeling of global ozone data using convolution
    Li, Yang
    Zhu, Zhengyuan
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2020, 3 (01) : 153 - 166
  • [30] Modeling Spatio-Temporal Extreme Events Using Graphical Models
    Yu, Hang
    Dauwels, Justin
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (05) : 1101 - 1116