Some bounds on the Laplacian eigenvalues of token graphs

被引:0
|
作者
Dalfo, C. [1 ]
Fiol, M. A. [2 ,3 ]
Messegue, A. [1 ,4 ]
机构
[1] Univ Lleida, Dept Matemat, Catalonia, Barcelona, Spain
[2] Univ Politecn Cataluna, Dept Matemat, Barcelona, Catalonia, Spain
[3] Inst Matemat UPC BarcelonaTech IMTech, Barcelona Grad Sch Math, Barcelona, Spain
[4] Univ Politecn Cataluna, Dept Ciencies Comp, Barcelona, Catalonia, Spain
关键词
Token graph; Laplacian spectrum; Algebraic connectivity; Binomial matrix; ALGEBRAIC CONNECTIVITY;
D O I
10.1016/j.disc.2024.114382
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The k-token graph F-k (G) of a graph G on n vertices is the graph whose vertices are the ((n)(k)) k-subsets of vertices from G, two of which are adjacent whenever their symmetric difference is a pair of adjacent vertices in G. It is known that the algebraic connectivity (or second Laplacian eigenvalue) of F-k (G) equals the algebraic connectivity alpha(G) of G. In this paper, we give some bounds on the (Laplacian) eigenvalues of the k-token graph (including the algebraic connectivity) in terms of the h-token graph, with h <= k. For instance, we prove that if lambda is an eigenvalue of F-k (G), but not of G, then lambda >= k alpha (G)- k + 1. As a consequence, we conclude that if alpha (G) >= k, then alpha(F-h (G)) = alpha(G) for every h <= k. (c) 2024 Published by Elsevier B.V.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] New bounds for the sum of powers of normalized Laplacian eigenvalues of graphs
    Clemente, Gian Paolo
    Cornaro, Alessandra
    ARS MATHEMATICA CONTEMPORANEA, 2016, 11 (02) : 403 - 413
  • [22] The k-Domination Number and Bounds for the Laplacian Eigenvalues of Graphs
    Li, Rao
    UTILITAS MATHEMATICA, 2009, 79 : 189 - 192
  • [23] Bounds on Laplacian eigenvalues related to total and signed domination of graphs
    Wei Shi
    Liying Kang
    Suichao Wu
    Czechoslovak Mathematical Journal, 2010, 60 : 315 - 325
  • [24] Some upper bounds for sums of eigenvalues of the Neumann Laplacian
    Li, Liangpan
    Tang, Lan
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (11) : 3301 - 3307
  • [25] Upper bounds on the Laplacian energy of some graphs
    Robbiano, Maria
    Martins, Enide Andrade
    Jimenez, Raul
    San Martin, Bernardo
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2010, 64 (01) : 97 - 110
  • [26] Some Bicyclic Graphs Having 2 as Their Laplacian Eigenvalues
    Farkhondeh, Masoumeh
    Habibi, Mohammad
    Mojdeh, Doost Ali
    Rao, Yongsheng
    MATHEMATICS, 2019, 7 (12)
  • [27] SOME PROPERTIES OF LAPLACIAN EIGENVALUES FOR GENERALIZED STAR GRAPHS
    Das, Kinkar Ch.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2005, 27 : 145 - 162
  • [28] On the Laplacian spectra of token graphs
    Dalfó, C.
    Duque, F.
    Fabila-Monroy, R.
    Fiol, M.A.
    Huemer, C.
    Trujillo-Negrete, A.L.
    Zaragoza Martínez, F.J.
    Dalfó, C. (cristina.dalfo@udl.cat), 1600, Elsevier Inc. (625): : 322 - 348
  • [29] On the Laplacian spectra of token graphs
    Dalfo, C.
    Duque, F.
    Fabila-Monroy, R.
    Fiol, M. A.
    Huemer, C.
    Trujillo-Negrete, A. L.
    Zaragoza Martinez, F. J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 625 : 322 - 348
  • [30] BOUNDS FOR LAPLACIAN GRAPH EIGENVALUES
    Maden, A. Dilek
    Buyukkose, Serife
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (03): : 529 - 536