Embracing Diversity: Interpretable Zero-shot classification beyond one vector per class

被引:0
|
作者
Moayeri, Mazda [1 ]
Rabbat, Michael [2 ]
Ibrahim, Mark [2 ]
Bouchacourt, Diane [2 ]
机构
[1] Univ Maryland, College Pk, MD 20742 USA
[2] FAIR Meta, New York, NY USA
关键词
Bias; Fairness; Vision Language Models (VLMs); Zero-shot; Classification;
D O I
10.1145/3630106.3659039
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vision-language models enable open-world classification of objects without the need for any retraining. While this zero-shot paradigm marks a significant advance, even today's best models exhibit skewed performance when objects are dissimilar from their typical depiction. Real world objects such as pears appear in a variety of forms - from diced to whole, on a table or in a bowl - yet standard VLM classifiers map all instances of a class to a single vector based on the class label. We argue that to represent this rich diversity within a class, zero-shot classification should move beyond a single vector. We propose a method to encode and account for diversity within a class using inferred attributes, still in the zero-shot setting without retraining. We find our method consistently outperforms standard zero-shot classification over a large suite of datasets encompassing hierarchies, diverse object states, and real-world geographic diversity, as well finer-grained datasets where intra-class diversity may be less prevalent. Importantly, our method is inherently interpretable, offering faithful explanations for each inference to facilitate model debugging and enhance transparency. We also find our method scales efficiently to a large number of attributes to account for diversity-leading to more accurate predictions for atypical instances. Finally, we characterize a principled trade-off between overall and worst class accuracy, which can be tuned via a hyperparameter of our method. We hope this work spurs further research into the promise of zero-shot classification beyond a single class vector for capturing diversity in the world, and building transparent AI systems without compromising performance.
引用
收藏
页码:2302 / 2321
页数:20
相关论文
共 50 条
  • [31] Class-Incremental Generalized Zero-Shot Learning
    Zhenfeng Sun
    Rui Feng
    Yanwei Fu
    Multimedia Tools and Applications, 2023, 82 : 38233 - 38247
  • [32] Zero-Shot Learning on Semantic Class Prototype Graph
    Fu, Zhenyong
    Xiang, Tao
    Kodirov, Elyor
    Gong, Shaogang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (08) : 2009 - 2022
  • [33] Enhanced VAEGAN: a zero-shot image classification method
    Ding, Bo
    Fan, Yufei
    He, Yongjun
    Zhao, Jing
    APPLIED INTELLIGENCE, 2023, 53 (08) : 9235 - 9246
  • [34] Learning Autoencoder of Attribute Constraint for Zero-Shot Classification
    Wang, Kun
    Wu, Songsong
    Gao, Guangwei
    Zhou, Quan
    Jing, Xiao-Yuan
    PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, : 605 - 610
  • [35] Label Augmentation for Zero-Shot Hierarchical Text Classification
    Paletto, Lorenzo
    Basile, Valerio
    Esposito, Roberto
    PROCEEDINGS OF THE 62ND ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, VOL 1: LONG PAPERS, 2024, : 7697 - 7706
  • [36] Enhancing Classification in Zero-Shot Learning with the Aid of Perceptron
    Zengin, Hilal
    Ismailoglu, Firat
    2022 30TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU, 2022,
  • [37] Unified benchmark for zero-shot Turkish text classification
    celik, Emrecan
    Dalyan, Tugba
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (03)
  • [38] Zero-shot Relation Classification from Side Information
    Gong, Jiaying
    Eldardiry, Hoda
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 576 - 585
  • [39] Zero-Shot Learning and Classification of Steel Surface Defects
    Nagy, Amr M.
    Czuni, Laszlo
    FOURTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2021), 2022, 12084
  • [40] Zero-Shot Audio Classification Via Semantic Embeddings
    Xie, Huang
    Virtanen, Tuomas
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2021, 29 : 1233 - 1242