Multi-parametric MRI to FMISO PET Synthesis for Hypoxia Prediction in Brain Tumors

被引:0
|
作者
Perlo, Daniele [1 ]
Kanli, Georgia [1 ,2 ]
Boudissa, Selma [1 ,2 ]
Keunen, Olivier [1 ,2 ]
机构
[1] Luxembourg Inst Hlth, Translat Radiom, Strassen, Luxembourg
[2] Luxembourg Inst Hlth, In Vivo Imaging Platform, Strassen, Luxembourg
来源
关键词
magnetic resonance imaging; positron emission tomography; hypoxia; deep learning; FMISO PET; FDG;
D O I
10.1007/978-3-031-72744-3_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This research paper presents a novel approach to the prediction of hypoxia in brain tumors, using multi-parametric Magnetic Resonance Imaging (MRI). Hypoxia, a condition characterized by low oxygen levels, is a common feature of malignant brain tumors associated with poor prognosis. Fluoromisonidazole Positron Emission Tomography (FMISO PET) is a well-established method for detecting hypoxia in vivo, but it is expensive and not widely available. Our study proposes the use of MRI, a more accessible and cost-effective imaging modality, to predict FMISO PET signals. We investigate Deep Learning (DL) based approaches trained on the ACRIN 6684 dataset, a resource that contains paired MRI and FMISO PET images from patients with brain tumors. With 3D extension of state-the-art models and spatial constraints to the objective function, specifically in the tumor region, our trained models effectively learn the complex relationships between the MRI features and the corresponding FMISO PET signals, thereby enabling the prediction of hypoxia from MRI scans alone. T he results show a strong correlation between the predicted and actual FMISO PET signals, with an overall PSNR score above 29.6 and a SSIM score greater than 0.94, confirming MRI as a promising option for hypoxia prediction in brain tumors. This approach could significantly improve the accessibility of hypoxia detection in clinical settings, with the potential for more timely and targeted treatments.
引用
收藏
页码:119 / 128
页数:10
相关论文
共 50 条
  • [21] Optimal time for early therapeutic response prediction in NPC with multi-parametric MRI
    Mui, W. L.
    Lee, W. M.
    Ng, W. T.
    Lee, H. F.
    Vardhanabhuti, V.
    Man, S. Y.
    Chua, T. T.
    Guan, X. Y.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S805 - S806
  • [22] Prediction of Prostate Gleason Score Using Neural Network and Multi-Parametric MRI
    Chen, S.
    D'Souza, W.
    Gullapalli, R.
    Mistry, N.
    MEDICAL PHYSICS, 2013, 40 (06)
  • [23] Modeling the Presence of Myelin and Edema in the Brain Based on Multi-Parametric Quantitative MRI
    Warntjes, Marcel
    Engstrom, Maria
    Tisell, Anders
    Lundberg, Peter
    FRONTIERS IN NEUROLOGY, 2016, 7
  • [24] Hirni: Segmentation of Brain Tumors in Multi-parametric Magnetic Resonance Imaging Scans
    Mejia, Gabriel
    Moreno, Danniel
    Ruiz, Daniela
    Aparicio, Nicolas
    2021 IEEE 2ND INTERNATIONAL CONGRESS OF BIOMEDICAL ENGINEERING AND BIOENGINEERING (CI-IB&BI 2021), 2021,
  • [25] Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma via Multi-Parametric MRI Radiomics
    Zhang, Yang
    Shu, Zhenyu
    Ye, Qin
    Chen, Junfa
    Zhong, Jianguo
    Jiang, Hongyang
    Wu, Cuiyun
    Yu, Taihen
    Pang, Peipei
    Ma, Tianshi
    Lin, Chunmiao
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [26] Multi-parametric prediction for cardiovascular risk assessment
    Henriques, Jorge
    de Carvalho, Paulo
    Rocha, Teresa
    Paredes, Simao
    Morais, Joao
    PHEALTH 2016, 2016, 224 : 15 - 20
  • [27] Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI
    Sauwen, N.
    Acou, M.
    Van Cauter, S.
    Sima, D. M.
    Veraart, J.
    Maes, F.
    Himmelreich, U.
    Achten, E.
    Van Huffel, S.
    NEUROIMAGE-CLINICAL, 2016, 12 : 753 - 764
  • [28] Simultaneous multi-parametric dualtracer-PET/MRI for tumor characterization of primary prostate cancer
    Hartenbach, Markus
    Hartenbach, Sabrina
    Baltzer, Pascal
    Susani, Martin
    Seitz, Christian
    Kenner, Lukas
    Wadsak, Wolfgang
    DiFranco, Matthew
    Haug, Alexander
    Hacker, Marcus
    JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (03)
  • [29] Correlation of 3D Arterial Spin Labeling and Multi-Parametric Dynamic Susceptibility Contrast Perfusion MRI in Brain Tumors
    Khashbat, Delgerdalai
    Abe, Md Takashi
    Ganbold, Mungunbagana
    Iwamoto, Seiji
    Uyama, Naoto
    Irahara, Saho
    Otomi, Youichi
    Harada, Masafumi
    Kageji, Teruyoshi
    Nagahiro, Shinji
    JOURNAL OF MEDICAL INVESTIGATION, 2016, 63 (3-4): : 175 - 181
  • [30] MRI Brain Tumour Segmentation using a CNN Over a Multi-parametric Feature Extraction
    Martinez, Elizabeth
    Calderon, Camilo
    Garcia, Hans
    Arguello, Henry
    2020 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS OF COMPUTATIONAL INTELLIGENCE (IEEE COLCACI 2020), 2020,