Multi-parametric MRI to FMISO PET Synthesis for Hypoxia Prediction in Brain Tumors

被引:0
|
作者
Perlo, Daniele [1 ]
Kanli, Georgia [1 ,2 ]
Boudissa, Selma [1 ,2 ]
Keunen, Olivier [1 ,2 ]
机构
[1] Luxembourg Inst Hlth, Translat Radiom, Strassen, Luxembourg
[2] Luxembourg Inst Hlth, In Vivo Imaging Platform, Strassen, Luxembourg
来源
关键词
magnetic resonance imaging; positron emission tomography; hypoxia; deep learning; FMISO PET; FDG;
D O I
10.1007/978-3-031-72744-3_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This research paper presents a novel approach to the prediction of hypoxia in brain tumors, using multi-parametric Magnetic Resonance Imaging (MRI). Hypoxia, a condition characterized by low oxygen levels, is a common feature of malignant brain tumors associated with poor prognosis. Fluoromisonidazole Positron Emission Tomography (FMISO PET) is a well-established method for detecting hypoxia in vivo, but it is expensive and not widely available. Our study proposes the use of MRI, a more accessible and cost-effective imaging modality, to predict FMISO PET signals. We investigate Deep Learning (DL) based approaches trained on the ACRIN 6684 dataset, a resource that contains paired MRI and FMISO PET images from patients with brain tumors. With 3D extension of state-the-art models and spatial constraints to the objective function, specifically in the tumor region, our trained models effectively learn the complex relationships between the MRI features and the corresponding FMISO PET signals, thereby enabling the prediction of hypoxia from MRI scans alone. T he results show a strong correlation between the predicted and actual FMISO PET signals, with an overall PSNR score above 29.6 and a SSIM score greater than 0.94, confirming MRI as a promising option for hypoxia prediction in brain tumors. This approach could significantly improve the accessibility of hypoxia detection in clinical settings, with the potential for more timely and targeted treatments.
引用
收藏
页码:119 / 128
页数:10
相关论文
共 50 条
  • [1] Intratumoral prediction of dynamic FMISO-PET information by machine learning of multi-parametric MRI
    Winter, R.
    Leibfarth, S.
    Boeke, S.
    Krueger, M.
    Mena-Romano, P.
    Sezgin, E. Cumhur
    Bowden, G.
    Cotton, J.
    Pichler, B.
    Zips, D.
    Thorwarth, D.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S328 - S328
  • [2] Feasibility of multi-parametric PET and MRI for prediction of tumour recurrence in patients with glioblastoma
    Lundemann, Michael
    af Rosenschold, Per Munck
    Muhic, Aida
    Larsen, Vibeke A.
    Poulsen, Hans S.
    Engelholm, Svend-Aage
    Andersen, Flemming L.
    Kjaer, Andreas
    Larsson, Henrik B. W.
    Law, Ian
    Hansen, Adam E.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (03) : 603 - 613
  • [3] Feasibility of multi-parametric PET and MRI for prediction of tumour recurrence in patients with glioblastoma
    Michael Lundemann
    Per Munck af Rosenschöld
    Aida Muhic
    Vibeke A. Larsen
    Hans S. Poulsen
    Svend-Aage Engelholm
    Flemming L. Andersen
    Andreas Kjær
    Henrik B. W. Larsson
    Ian Law
    Adam E. Hansen
    European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46 : 603 - 613
  • [4] A Multi-Center, Multi-Parametric MRI Dataset of Primary and Secondary Brain Tumors
    Gong, Zhenyu
    Xu, Tao
    Peng, Nan
    Cheng, Xing
    Niu, Chen
    Wiestler, Benedikt
    Hong, Fan
    Li, Hongwei Bran
    SCIENTIFIC DATA, 2024, 11 (01)
  • [5] A Radiomics Approach for Automated Identification of Aggressive Tumors on Combined PET and Multi-parametric MRI
    Wan, Tao
    Cui, Bixiao
    Wang, Yaping
    Qin, Zengchang
    Lu, Jie
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT VI, 2017, 10639 : 731 - 739
  • [6] Prediction of chemotherapy response in osteosarcoma using multi-parametric PET/MRI texture feature
    Park, Y.
    Kim, W.
    Byun, B.
    Kang, J.
    Kong, C.
    Song, W.
    Lim, I.
    Lee, Y.
    Kim, B.
    Lim, S.
    Woo, S.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 : S443 - S444
  • [7] Automated segmentation of pediatric brain tumors based on multi-parametric MRI and deep learning
    Madhogarhia, Rachel
    Kazerooni, Anahita Fathi
    Arif, Sherjeel
    Ware, Jeffrey B.
    Familiar, Ariana M.
    Vidal, Lorenna
    Bagheri, Sina
    Anderson, Hannah
    Haldar, Debanjan
    Yagoda, Sophie
    Graves, Erin
    Spadola, Michael
    Yan, Rachel
    Dahmane, Nadia
    Sako, Chiharu
    Vossough, Arastoo
    Storm, Phillip
    Resnick, Adam
    Davatzikos, Christos
    Nabavizadeh, Ali
    MEDICAL IMAGING 2022: COMPUTER-AIDED DIAGNOSIS, 2022, 12033
  • [8] Texture Descriptors to distinguish Radiation Necrosis from Recurrent Brain Tumors on multi-parametric MRI
    Tiwari, Pallavi
    Prasanna, Prateek
    Rogers, Lisa
    Wolansky, Leo
    Badve, Chaitra
    Sloan, Andrew
    Cohen, Mark
    Madabhushi, Anant
    MEDICAL IMAGING 2014: COMPUTER-AIDED DIAGNOSIS, 2014, 9035
  • [9] Combined PET/MRI: Multi-modality Multi-parametric Imaging Is Here
    Bailey, D. L.
    Pichler, B. J.
    Gueckel, B.
    Barthel, H.
    Beer, A. J.
    Bremerich, J.
    Czernin, J.
    Drzezga, A.
    Franzius, C.
    Goh, V.
    Hartenbach, M.
    Iida, H.
    Kjaer, A.
    la Fougere, C.
    Ladefoged, C. N.
    Law, I.
    Nikolaou, K.
    Quick, H. H.
    Sabri, O.
    Schaefer, J.
    Schaefers, M.
    Wehrl, H. F.
    Beyer, T.
    MOLECULAR IMAGING AND BIOLOGY, 2015, 17 (05) : 595 - 608
  • [10] MULTI-PARAMETRIC MRI MAPS FOR DETECTION AND GRADING OF DOMINANT PROSTATE TUMORS
    Ding, Xiaobo
    Tong, Dan
    Zhang, Huimao
    JOURNAL OF UROLOGY, 2014, 191 (04): : E592 - E592