Analog filters based on the Mittag-Leffler functions

被引:0
|
作者
Allagui, Anis [1 ,2 ]
Elwakil, Ahmed S. [3 ,4 ,5 ]
Nako, Julia [6 ]
Psychalinos, Costas [6 ]
机构
[1] Univ Sharjah, Dept Sustainable & Renewable Energy Engn, POB 27272, Sharjah, U Arab Emirates
[2] Univ Sharjah, Dept Elect & Comp Engn, Miami, FL 33174 USA
[3] Univ Sharjah, Dept Elect Engn, POB 27272, Sharjah, U Arab Emirates
[4] Univ Calgary, Dept Elect & Software Engn, Calgary, AB, Canada
[5] Nile Univ, Nanoelect Integrated Syst Ctr NISC, Giza, Egypt
[6] Univ Patras, Dept Phys, Elect Lab, GR-26504 Patras, Greece
关键词
Analog signal processing; Mittag-Leffler function; Fractional-order filters; Dirac delta function; Field programmable analog array; PRACTICAL REALIZATION; BUTTERWORTH FILTER;
D O I
10.1016/j.sigpro.2025.109953
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose and study anew class of filters (named hereinafter the Mittag-Leffler filters) based on the MittagLeffler function E alpha,beta(z) in its single-parameter or double-parameter forms by transposing its argument to the frequency-domain; i.e. z = -s = -jco. A unique feature of these filters is that their impulse response is a Gaussian-like (delta-like) deformed and delayed impulse function for which we derive exact expressions using the H-Fox function. We also study the frequency response of this class of filters and obtain lower-order, realizable integer-order approximations of its transfer functions. A second-order curve-fitting approximation is then used to perform experimental results using a Field Programmable Analog Array platform to verify the theory.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Overconvergence of series in generalized mittag-leffler functions
    Paneva-Konovska, Jordanka
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (02) : 506 - 520
  • [32] Certain geometric properties of the Mittag-Leffler functions
    Bansal, D.
    Prajapat, J. K.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (03) : 338 - 350
  • [33] On properties of the generalized Mittag-Leffler type functions
    Gorenflo, R
    Kilbas, AA
    Rogozin, SV
    DOKLADY AKADEMII NAUK BELARUSI, 1998, 42 (05): : 34 - 39
  • [34] On the fractional calculus of multivariate Mittag-Leffler functions
    Ozarslan, Mehmet Ali
    Fernandez, Arran
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (02) : 247 - 273
  • [35] On the real zeros of functions of Mittag-Leffler type
    A. V. Pskhu
    Mathematical Notes, 2005, 77 : 546 - 552
  • [36] Certain geometric properties of Mittag-Leffler functions
    Saddaf Noreen
    Mohsan Raza
    Sarfraz Nawaz Malik
    Journal of Inequalities and Applications, 2019
  • [37] ON GEOMETRIC PROPERTIES OF THE MITTAG-LEFFLER AND WRIGHT FUNCTIONS
    Das, Sourav
    Mehrez, Khaled
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (04) : 949 - 965
  • [38] On the real zeros of functions of Mittag-Leffler type
    Pskhu, AV
    MATHEMATICAL NOTES, 2005, 77 (3-4) : 546 - 552
  • [39] A note on asymptotic behaviour of Mittag-Leffler functions
    Wang, JinRong
    Zhou, Yong
    O'Regan, D.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2018, 29 (02) : 81 - 94
  • [40] The role of Mittag-Leffler functions in anomalous relaxation
    Crothers, DSF
    Holland, D
    Kalmykov, YP
    Coffey, W
    JOURNAL OF MOLECULAR LIQUIDS, 2004, 114 (1-3) : 27 - 34