Metal-Organic Coordination Enhanced Metallopolymer Electrolytes for Wide-Temperature Solid-State Lithium Metal Batteries

被引:0
|
作者
Zhao, Pei-Chen [1 ]
Wang, Yaoda [1 ]
Huang, Qi-Sheng [1 ]
Jin, Zhong [1 ]
Li, Cheng-Hui [1 ]
机构
[1] Nanjing Univ, Res Inst Green Chem & Engn, Tianchang New Mat & Energy Technol Res Ctr, Sch Chem & Chem Engn,State Key Lab Coordinat Chem,, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid-state Li Metal Batteries; Metal-organic coordination; Mo-polyoxometalates; Metallopolymers; HIGH-ENERGY; POLYMER ELECTROLYTES; DESIGN;
D O I
10.1002/anie.202416897
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The practical application of polymer electrolytes is seriously hindered by the inferior Li+ ionic conductivity, low Li+ transference number (t(Li+)), and poor interfacial stability. Herein, a structurally novel metallopolymer is designed and synthesized by exploiting a molybdenum (Mo) paddle-wheel complex as a tetratopic linker to bridge organic and inorganic moieties at molecular level. The prepared metallopolymer possesses combined merits of outstanding mechanical and thermal stability, as well as a low glass transition temperature (T-g <-50 degrees C). Based on this metallopolymer, an advanced metal-organic coordination enhanced metallopolymer electrolyte (MPE) is developed for constructing high-performance solid-state lithium metal batteries (LMBs). Due to the unsaturated coordination of Mo atoms, the uniformly distributed Mo-polyoxometalates (Mo-POMs) in metallopolymer skeleton can effectively immobilize anions (bis(fluorosulfonyl)imide anions, FSI-) and promote the dissociation of Li salts. Moreover, dynamic metal-organic coordination bonds endow the MPE with re-processability and self-healing, enabling it to accommodate electrode volume changes and maintain good interfacial contact. Consequently, the MPE achieves a competitive ionic conductivity of 0.712 mS cm(-1) (25 degrees C), a high t(Li+) (0.625), and a wide electrochemical stability window (>5.0 V). This study presents a unique MPE design based on metal-organic coordination enhanced strategy, providing a promising solution for developing wide-temperature solid-state LMBs.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Improving thermal stability and kinetical properties through polymer brushes towards wide-temperature solid-state lithium metal batteries
    Li, Yuxuan
    Yang, Jing
    Zhu, Kangshuai
    Pan, Qinmin
    COMPOSITES PART B-ENGINEERING, 2025, 297
  • [22] Nitride solid-state electrolytes for all-solid-state lithium metal batteries
    Li, Weihan
    Li, Minsi
    Ren, Haoqi
    Kim, Jung Tae
    Li, Ruying
    Sham, Tsun-Kong
    Sun, Xueliang
    ENERGY & ENVIRONMENTAL SCIENCE, 2025,
  • [23] High-Performance Metal-Organic Framework-Based Single Ion Conducting Solid-State Electrolytes for Low-Temperature Lithium Metal Batteries
    Zhu, Fulong
    Bao, Hongfei
    Wu, Xuesong
    Tao, Yanli
    Qin, Chao
    Su, Zhongmin
    Kang, Zhenhui
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (46) : 43206 - 43213
  • [24] Fast Charging Lithium Metal Batteries with Liquid and Solid-State Electrolytes
    Park, Kyobin
    Song, Juyeop
    Lee, Kyu Tae
    BATTERIES & SUPERCAPS, 2023, 6 (12)
  • [25] Fundamentals of Electrolyte Design for Wide-Temperature Lithium Metal Batteries
    Liu, Qianqian
    Wang, Liguang
    ADVANCED ENERGY MATERIALS, 2023, 13 (37)
  • [26] Metal-organic frameworks for solid-state electrolytes: A mini review
    Liu, Chang
    Deng, Lijiao
    Li, Xuzi
    Wu, Tao
    Zhang, Weijie
    Cui, Haishuai
    Yang, Hai
    ELECTROCHEMISTRY COMMUNICATIONS, 2023, 150
  • [27] Lithium Metal-Compatible Antifluorite Electrolytes for Solid-State Batteries
    Yu, Pengcheng
    Zhang, Haochang
    Hussain, Fiaz
    Luo, Jing
    Tang, Wen
    Lei, Jiuwei
    Gao, Lei
    Butenko, Denys
    Wang, Changhong
    Zhu, Jinlong
    Yin, Wen
    Zhang, Hao
    Han, Songbai
    Zou, Ruqiang
    Chen, Wei
    Zhao, Yusheng
    Xia, Wei
    Sun, Xueliang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (18) : 12681 - 12690
  • [28] Solid-State Electrolytes for Lithium Metal Batteries: State-of-the-Art and Perspectives
    Huang, Jun
    Li, Chen
    Jiang, Dongkai
    Gao, Jingyi
    Cheng, Lei
    Li, Guocheng
    Luo, Hang
    Xu, Zheng-Long
    Shin, Dong-Myeong
    Wang, Yanming
    Lu, Yingying
    Kim, Yoonseob
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (01)
  • [29] Lamellar Ionic Liquid Composite Electrolyte for Wide-Temperature Solid-State Lithium-Metal Battery
    Zhang, Yafang
    Huang, Jiajia
    Liu, Huan
    Kou, Weijie
    Dai, Yan
    Dang, Wei
    Wu, Wenjia
    Wang, Jingtao
    Fu, Yongzhu
    Jiang, Zhongyi
    ADVANCED ENERGY MATERIALS, 2023, 13 (23)
  • [30] Application and Research Progress of Covalent Organic Frameworks for Solid-State Electrolytes in Lithium Metal Batteries
    Qiao, Yufeng
    Zeng, Xiaoyue
    Wang, Haihong
    Long, Jianlin
    Tian, Yanhong
    Lan, Jinle
    Yu, Yunhua
    Yang, Xiaoping
    MATERIALS, 2023, 16 (06)