Photon number splitting in a multilevel transmon with different microwave photon sources

被引:0
|
作者
Li, Zishuo [1 ,2 ,3 ]
Guo, Tingting [1 ,2 ,3 ]
Zhang, Kaixuan [1 ,2 ,3 ]
Xu, Wenqu [1 ,2 ,3 ]
Zuo, Quan [1 ,2 ,3 ]
Li, Jinpeng [2 ]
Pan, Jiazheng [2 ]
Sun, Hancong [2 ]
Cao, Chunhai [1 ,3 ]
Sun, Guozhu [1 ,2 ,3 ,4 ]
Wu, Peiheng [1 ,2 ,3 ]
机构
[1] Nanjing Univ, Res Inst Supercond Elect, Sch Elect Sci & Engn, Nanjing 210093, Peoples R China
[2] Purple Mt Labs, Nanjing 211111, Peoples R China
[3] Hefei Natl Lab, Hefei 230088, Peoples R China
[4] Nanjing Univ, Shishan Lab, Suzhou Campus, Suzhou 215163, Peoples R China
基金
中国国家自然科学基金;
关键词
CAVITY QUANTUM ELECTRODYNAMICS;
D O I
10.1103/PhysRevB.111.054525
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present the observation of photon number splitting (PNS) in a superconducting transmon qubit with different microwave photon sources. Such PNS is not limited to the lower energy levels and can also be observed in the higher energy levels of a superconducting transmon qubit. The sideband transition, Autler-Townes splitting, and the absence of PNS are demonstrated under certain conditions. Furthermore, we investigate the PNS induced by the nonclassical microwave photons emitted from a dual-mode Josephson parametric amplifier, which can operate in either the single mode or dual mode. The evolution from the dual-mode squeezing to the self-oscillation light emission is demonstrated. Our results provide a useful reference for future investigations, such as the exploration of more nonlinear effects in strongly driven circuit QED systems, the manipulation of quantum states, and the characterization of the quantum microwave source by utilizing PNS.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Photon number teleportation
    Koniorczyk, M
    Janszky, J
    Kis, Z
    PHYSICS LETTERS A, 1999, 256 (5-6) : 334 - 338
  • [42] PHOTON SOURCES FOR BRACHYTHERAPY
    Rijnders, Alex
    RADIOTHERAPY AND BRACHYTHERAPY, 2009, : 185 - 193
  • [43] Photon number generation with the visible light photon counter
    Waks, E
    Diamanti, E
    Yamamoto, Y
    QUANTUM COMMUNICATIONS AND QUANTUM IMAGING II, 2004, 5551 : 73 - 86
  • [44] Rabi-splitting and photon-number squeezing due to excitons in microcavities
    Hanamura, E
    MICROCAVITIES AND PHOTONIC BANDGAPS: PHYSICS AND APPLICATIONS, 1996, 324 : 533 - 542
  • [45] Photon-number splitting of squeezed light by a single qubit in circuit QED
    Moon, Kyungsun
    PHYSICAL REVIEW A, 2013, 88 (04):
  • [46] Quantum Flows for Secret Key Distribution in the Presence of the Photon Number Splitting Attack
    Lizama-Perez, Luis A.
    Mauricio Lopez, J.
    De Carlos-Lopez, Eduardo
    Venegas-Andraca, Salvador E.
    ENTROPY, 2014, 16 (06): : 3121 - 3135
  • [47] Experimental resources needed to implement photon number splitting attack in quantum cryptography
    Kulik, S. P.
    Kravtsov, K. S.
    Molotkov, S. N.
    LASER PHYSICS LETTERS, 2022, 19 (02)
  • [48] Assisted Postselective Quantum Transformations and an Improved Photon Number Splitting Attack Strategy
    Klevtsov, Timur
    Kronberg, Dmitry
    MATHEMATICS, 2023, 11 (24)
  • [49] Measurement-induced entanglement of two transmon qubits by a single photon
    Ohm, Christoph
    Hassler, Fabian
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [50] Virtual-photon-mediated spin-qubit–transmon coupling
    A. J. Landig
    J. V. Koski
    P. Scarlino
    C. Müller
    J. C. Abadillo-Uriel
    B. Kratochwil
    C. Reichl
    W. Wegscheider
    S. N. Coppersmith
    Mark Friesen
    A. Wallraff
    T. Ihn
    K. Ensslin
    Nature Communications, 10